An improved model on forecasting temperature rise of high-speed angular contact ball bearings considering structural constraints

2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.

2019 ◽  
Vol 72 (5) ◽  
pp. 657-664
Author(s):  
De-Xing Zheng ◽  
W.F. Chen ◽  
Guanyun Xiao ◽  
Dateng Zheng

Purpose This paper aims to devote to the experimental analysis and modeling on the heat generation of angular contact ball bearings under vibration. Design/methodology/approach The experiments about vibration effect on bearing temperature are implemented. To explore the causes of bearing temperature rise, the shaft-bearing system is first simplified to a forced vibration model to analyze the bearing loads in vibration. Next, the vibratory-induced additional load is proposed and the spin power loss of balls is re-derived under vibration. The vibration-induced heat is integrated into a novel forecasting model of bearing power loss. For validation, the muti-node model for angular contact ball bearings is referred to create the thermal network of spindle front bearing, and then the contrast and discussion is done. Findings The simulation and test results both indicate that more energy is expended and more heat is generated with vibration. And the further quantitative comparisons between simulation results and experimental values of bearing temperature demonstrate the rationality and availability of constructed model on bearing heat generation. Originality/value The vibration-induced additional load is proposed and modeled, and the novel forecasting model for heat generation for high-speed angular contact ball bearings with vibration is constructed and validated.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


Author(s):  
J Dominy

This paper develops a simplified numerical technique for the analysis of heat generation and cage slip in high-speed axially loaded ball bearings. The model compares well with experimental results and has shown the characteristic slip behaviour associated with ball bearings. It has been possible to use the model to investigate the nature and causes of slip in lightly loaded ball bearings and it has been shown that the mechanism is primarily dependent upon the spin power, which falls rapidly as slip sets in. The characteristics of slip in ball bearings are shown to be quite different to those in roller bearings.


2020 ◽  
Vol 3 (2) ◽  
pp. 67-78
Author(s):  
Qing Xu ◽  
Jiangfeng Wang ◽  
Botong Wang ◽  
Xuedong Yan

Purpose This study aims to propose a speed guidance model of the CV environment to alleviate traffic congestion at intersections and improve traffic efficiency. By introducing the theory of moving block section for high-speed train control, a speed guidance model based on the quasi-moving block speed guidance (QMBSG) is proposed to direct platoon including human-driven vehicles and connected vehicles (CV) through the intersection coordinately. Design/methodology/approach In this model, the green time of the intersection is divided into multiple block intervals according to the minimal safety headway. Connected vehicles can pass through the intersection by following the block interval using the QMBSG model. The block interval is assigned dynamically according to the traveling relation of HV and CV, when entering the communication range of the intersection. To validate the comprehensive guidance effect of the proposed model, a general evaluation function (GEF) is established. Compared to CVs without speed guidance, the simulation results show that the GEF of QMBSG model has an obvious improvement. Findings Compared to CVs without speed guidance, the simulation results show that the GEF of QMBSG model has an obvious improvement. Also, compared to the single intersection speed guidance model, the GEF value of the QMBSG model improves over 17.1%. To further explore the guidance effect, the impact of sensitivity factors of the CVs’ environment, such as intersection environment, communication range and penetration rate (PR) is analyzed. When the PR reaches 75.0%, the GEF value will change suddenly and the model guidance effect will be significantly improved. This paper also analyzes the impact of the length of block interval under different PR and traffic demands. It is found that the proposed model has a better guidance effect when the length of the block section is 2 s, which facilitates traffic congestion alleviation of the intersection in practice. Originality/value Based on the aforementioned discussion, the contributions of this paper are three-fold. Based on the traveling information of HV/CV and the signal phase and timing plans, the QMBSG model is proposed to direct platoon consisting of HV and CV through the intersection coordinately, by following the block interval assigned dynamically. Considering comprehensively the indexes of mobility, safety and environment, a GEF is provided to evaluate the guidance effect of vehicles through the intersection. Sensitivity analysis is carried out on the QMBSG model. The key communication and traffic parameters of the CV environment are analyzed, such as path attenuation, PR, etc. Finally, the effect of the length of block interval is explored.


1988 ◽  
Vol 110 (4) ◽  
pp. 693-698 ◽  
Author(s):  
Hirotoshi Aramaki ◽  
Yoshio Shoda ◽  
Yuka Morishita ◽  
Takeshi Sawamoto

Two types of angular contact ball bearings for machine tools having steel rings and silicon nitride balls were tested and the temperature rise was compared with that of conventional steel ball bearings with grease lubrication and oil-air lubrication as well. Experimental results indicated that the temperature rise of silicon nitride ball bearings was much lower than that of steel ball bearings at high speeds. Calculations made using a computer demonstrated that the reduction of gyroscopic moments and centrifugal forces acting on balls because of the low density of silicon nitride resulted in about 30 to 50 percent less frictional loss at high speeds even with low-cost lubrication such as grease or oil-air.


Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 257-269
Author(s):  
Vimukth John ◽  
Shylu Sam ◽  
S. Radha ◽  
P. Sam Paul ◽  
Joel Samuel

Purpose The purpose of this work is to reduce the power consumption of KSA and to improve the PDP for data path applications. In digital Very Large – Scale Integration systems, the addition of two numbers is one of the essential functions. This arithmetic function is used in the modern digital signal processors and microprocessors. The operating speed of these processors depends on the computation of the arithmetic function. The speed computation block for most of the datapath elements was adders. In this paper, the Kogge–Stone adder (KSA) is designed using XOR, AND and proposed OR gates. The proposed OR gate has less power consumption due to the less number of transistors. In arithmetic logic circuit power, delay and power delay products (PDP) are considered as the important parameters. The delays reported for the proposed OR gate are less when compared with the conventional Complementary Metal Oxide Semiconductor (CMOS) OR gate and pre-existing logic styles. The proposed circuits are optimized in terms of power, delay and PDP. To analyze the performance of KSA, extensive Cadence Virtuoso simulations are used. From the simulation results based on 45 nm CMOS process, it was observed that the proposed design has obtained 688.3 nW of power consumption, 0.81 ns of delay and 0.55 fJ of PDP at 1.1 V. Design/methodology/approach In this paper, a new circuit for OR gate is proposed. The KSA is designed using XOR, AND and proposed OR gates. Findings The proposed OR gate has less power consumption due to the less number of transistors. The delays reported for the proposed OR gate are less when compared with the conventional CMOS OR gate and pre-existing logic styles. The proposed circuits are optimized in terms of power, delay and PDP. Originality/value In arithmetic logic circuit power, delay and PDP are considered as the important parameters. In this paper, a new circuit for OR gate is proposed. The power consumption of the designed KSA using the proposed OR gate is very less when compared with the conventional KSA. Simulation results show that the performance of the proposed KSA are improved and suitable for high speed applications.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Sungae Lee ◽  
Muyang He ◽  
Chang-Dong Yeo

The burnishing wear of carbon films found in dynamic microdevices could be attributed to both mechanical stress and temperature rise by frictional heat generation. In this study, novel modeling and experiment were performed to investigate the burnishing wear mechanism of carbon film during high speed sliding contact. An improved thermomechanical contact model for a single asperity was extended to rough surface contact. The contact stress and surface temperature rise were examined at various contact conditions. To verify the thermal degradation of the carbon film by frictional heat flux, micro-Raman spectroscopy measurement was performed on actual burnishing failure sample.


2014 ◽  
Vol 66 (2) ◽  
pp. 244-259 ◽  
Author(s):  
H.C. Garg ◽  
Vijay Kumar

Purpose – The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the lubricant fluid-film and bearing surface. To predict the performance of a bearing realistically, theoretical model must consider the combined influence of the rise of temperature and non-Newtonian behavior of the lubricant. The aim of the present paper is to study the effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on performance of constant flow valve compensated multiple hole-entry hybrid journal bearings. Design/methodology/approach – Finite element method has been used to solve Reynolds equation along with restrictor flow equation, 3D energy equation and 3D conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow cubic shear stress law. Findings – The thermohydrostatic rheological performances of symmetric and asymmetric hole-entry hybrid journal bearing configurations are studied. The computed results illustrate that variation of viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of hole-entry hybrid journal bearing system quite significantly. Originality/value – In the present work, the influences of the viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance characteristics of non-recessed hole-entry hybrid journal bearing with symmetric and asymmetric configurations compensated with constant flow valve restrictors have been investigated for generating the design data to be used by bearing designer. The design data computed in the present thesis are a contribution in field of knowledge of bearing design.


2020 ◽  
Vol 72 (10) ◽  
pp. 1205-1215 ◽  
Author(s):  
Li Cui

Purpose Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions. Design/methodology/approach A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed. Findings To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life. Originality/value This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/


2020 ◽  
Vol 10 (12) ◽  
pp. 4373
Author(s):  
Yu Wang ◽  
Junci Cao ◽  
Qingbin Tong ◽  
Guoping An ◽  
Ruifang Liu ◽  
...  

The transient thermal performance of rolling bearings affects the mechanical performance and system safety of traction motors. Most of the traditional empirical formulas used in temperature analysis have been simplified and cannot be completely applied to the calculation of heat generation and convection heat transfer coefficients. Based on the comparative analysis of finite element transient temperature and experimental data, this paper proposes a correction method of mathematical model and derives an accurate calculation formula for the heat generation and lubricant convection heat transfer coefficient of ball bearings applicable for the non-driving end in the traction motor of a high-speed EMU (Electric Multiple Unit). The accuracy of the results has been verified by durability experiment data. In addition, with changes in speed, radial load and other factors taken into account, we have analyzed the influence of these time-varying factors on ball bearing temperature, as well as the temperature distribution law of each component in a grease-lubricated bearing, in a bid to lay a foundation for follow-up research on the heat transfer laws of traction motors and rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document