scholarly journals Soil Moisture Inversion with Sparse Vegetation Coverage Areas and Analysis of Spatial Characteristics Based on RADARSAT-2

Author(s):  
Hui Kong
Author(s):  
L. Han ◽  
L. Chen ◽  
Y. Zhang ◽  
X. Qin

In the process of retrieving soil moisture (<i>M<sub>v</sub></i>) by active microwave, surface roughness is an important parameter affecting the accuracy of <i>m<sub>v</sub></i> retrieval.Using effective roughness to replace the original measurement value of surface roughness can effectively avoid the error. In the existing methods of soil water inversion, the value of fixed mean square root height (<i>S</i>) was used to retrieve the surface of different types and vegetation coverage, neglecting the difference of different ground surface. This paper proposed a LUT (look up table) soil moisture inversion method based on the pixel scale effective roughness. First, the effective roughness was obtained by using the measured soil moisture value of the sampling point based on the LUT method. And then the empirical function between the optimum roughness (<i>S</i>, Correlation length-<i>l</i>) and the backscattering coefficient of VV/HH polarization was obtained. The value of each pixel's <i>S</i> and <i>L</i> was obtained by using the empirical function. Finally, the soil moisture was retrieved by the LUT method. Using the measured data of the Linze sample area to verify, the results showed that the proposed method was superior to the LUT inversion method using the <i>S</i> fixed value without dependence on the measured data of the roughness. It was also proved that the inversion method proposed in this paper is not only applicable to the bare soil area, but still maintained a high precision in the soil moisture inversion results in the area with large vegetation coverage.


2019 ◽  
Vol 11 (24) ◽  
pp. 3034 ◽  
Author(s):  
Xiufang Zhu ◽  
Yaozhong Pan ◽  
Junxia Wang ◽  
Ying Liu

This study proposes a cuboid model for soil moisture assessment. In the model, the three edges were the meteorological, soil, and vegetation feature parameters highly related to soil moisture, and the edge lengths represented the degree of influence of each feature parameter on soil moisture. Soil moisture is assessed by the cuboid diagonal, which is referred to as the cuboid soil moisture index (CSMI) in this paper. The model was applied and validated in the Huang-Huai-Hai Plain. The results showed that (1) the difference in land surface temperature between day and night (ΔLST), land surface water index (LSWI), and accumulated precipitation (AP) were most closely correlated with soil moisture observation data in our study area, and were therefore selected as soil, crop, and meteorological system parameters to participate in CSMI calculations, respectively. (2) CSMI-1, with a cuboid length coefficient of 2/1/2, was the best model. The correlation of soil moisture derived from CSMI-1 with observed values was 0.64, 0.60, and 0.52 at depths of 10 cm, 20 cm, and 50 cm, respectively. (3) CSMI-1 had good applicability to the evaluation of soil moisture under different vegetation coverage. When the normalized difference vegetation index (NDVI)was 0–0.7, CSMI-1 was highly correlated with soil moisture at a significance level of 0.01. (4) The three-dimensional (3D) CSMI model can be easily converted to a two-dimensional (2D) model to adapt to different surface conditions (as long as the weight coefficient of one parameter is set to 0). Irrigation information (if available) can be considered as artificial recharge precipitation added in the AP to improve the accuracy of soil moisture inversion. This study provides a reference for soil moisture inversion using optical remote sensing images by integrating soil, vegetation, and meteorological feature parameters.


2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2021 ◽  
Vol 13 (4) ◽  
pp. 680
Author(s):  
Lei Wang ◽  
Wen Zhuo ◽  
Zhifang Pei ◽  
Xingyuan Tong ◽  
Wei Han ◽  
...  

Massive desert locust swarms have been threatening and devouring natural vegetation and agricultural crops in East Africa and West Asia since 2019, and the event developed into a rare and globally concerning locust upsurge in early 2020. The breeding, maturation, concentration and migration of locusts rely on appropriate environmental factors, mainly precipitation, temperature, vegetation coverage and land-surface soil moisture. Remotely sensed images and long-term meteorological observations across the desert locust invasion area were analyzed to explore the complex drivers, vegetation losses and growing trends during the locust upsurge in this study. The results revealed that (1) the intense precipitation events in the Arabian Peninsula during 2018 provided suitable soil moisture and lush vegetation, thus promoting locust breeding, multiplication and gregarization; (2) the regions affected by the heavy rainfall in 2019 shifted from the Arabian Peninsula to West Asia and Northeast Africa, thus driving the vast locust swarms migrating into those regions and causing enormous vegetation loss; (3) the soil moisture and NDVI anomalies corresponded well with the locust swarm movements; and (4) there was a low chance the eastwardly migrating locust swarms would fly into the Indochina Peninsula and Southwest China.


2018 ◽  
Vol 10 (10) ◽  
pp. 3459
Author(s):  
Shu-Di Fan ◽  
Yue-Ming Hu ◽  
Lu Wang ◽  
Zhen-Hua Liu ◽  
Zhou Shi ◽  
...  

To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.


2021 ◽  
Author(s):  
Yajie Shi ◽  
Yueji Liang ◽  
Chao Ren ◽  
Jianmin Lai ◽  
Qin Ding ◽  
...  

2021 ◽  
pp. 133-144
Author(s):  
Yuhua Zhang ◽  
Lili Jing ◽  
Yanmin Zhao ◽  
Hongliang Ruan ◽  
Lei Yang ◽  
...  

2019 ◽  
Vol 131 ◽  
pp. 01098
Author(s):  
Zhang Hong-wei ◽  
Huai-liang Chen ◽  
Fei-na Zha

In the middle and late growing period of winter wheat, soil moisture is easily affected by saturation when using MODIS data to retrieve soil moisture. In this paper, in order to reduce the effect of the saturation caused by increasing vegetation coverage in middle and late stage of winter wheat, the Difference Vegetation Index (DVI) model was modified with different coefficients in different growth stages of winter wheat based on MODIS spectral data and LAI characteristics of variation. LAI was divided into three stages, LAI ≤ 1 < LAI ≤, 3 < LAI, and the adjusting coefficient of α=1, α=3, α=5, were taken to modifying the Difference Vegetation Index(DVI). The results show that the Modified Difference Vegetation Index (MDVIα) can effectively reduce the interference of saturation, and the inversion result of soil moisture in the middle and late period of winter wheat growth is obviously superior to the uncorrected inversion model of DVI.


Sign in / Sign up

Export Citation Format

Share Document