scholarly journals The Optimization the Latching Mechanism Design Based on Progressive Damage Analysis

Author(s):  
Yang Yang ◽  
Ning Liu ◽  
Qilong Sun ◽  
Xiaoxue Wang ◽  
Juwei Chen
2019 ◽  
Vol 64 (2) ◽  
pp. 1-12
Author(s):  
Yuri Nikishkov ◽  
Guillaume Seon ◽  
Andrew Makeev

Advanced polymeric composites are playing a major role in designing high-performance and lightweight vertical lift structures. However, uncertain residual strength and remaining useful life of the composite rotor and airframe structures due to complexity of failure mechanisms and susceptibility to manufacturing irregularities, which may be precursors to structural damage, impose risks that cannot be mitigated exclusively by time-consuming and costly experimental iterations. Validated analysis techniques accelerating design, certification, and qualification of composite structures are needed. Our team has been taking essential steps toward improving confidence in material qualification for laminated composites. The first step started with our reduced lamina test methods, short-beam shear, and small-plate twist based on digital image correlation measuring as a subset the standard material properties and, in addition, key properties that cannot be currently measured using any standard test methods. The lamina properties provide essential material input data for laminate analysis. The laminate analysis was the second step increasing confidence in material qualification. A known weakness of the existing progressive damage analysis methods is the lack of effective techniques to predict ultimate failure. The newly developed methodology relies on explicit finite element modeling and eliminates convergence issues in the ply-level progressive damage analysis methods due to severe nonlinear discontinuities after propagation of damage beyond detectable size. This work shows results of applying this methodology to nanosilica-toughened IM7/PMT-F3GHT open-hole tension strength/fatigue, open-hole compression strength/fatigue, and bearing strength multidirectional laminate configurations. The ability to predict progression of damage from initiation to ultimate strength and fatigue for advanced material systems including IM7/PMT-F3GHT carbon/epoxy reinforced by nanosilica has been demonstrated for the first time.


2020 ◽  
Vol 190 ◽  
pp. 107921 ◽  
Author(s):  
M.H. Nagaraj ◽  
J. Reiner ◽  
R. Vaziri ◽  
E. Carrera ◽  
M. Petrolo

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Shuyuan Zhao ◽  
Jianglong Dong ◽  
Chao Lv ◽  
Zhengyu Li ◽  
Xinyang Sun ◽  
...  

The hybrid CMC and superalloy bolted joints have exhibited great potential to be used as thermostructural components of reusable space transportation systems, given the respective strengths of these two materials. In the high temperature excursion of the hybrid joints with the aircrafts and space vehicles, the substantial difference in thermal expansion coefficients of CMC and superalloy materials will induce complex superposition of initial assembly stress, thermal stress, and tensile stress around fastening area, which might lead to unknown failure behavior of joint structure. To address this concern, a finite element model embedded with progressive damage analysis was established to simulate the thermostructural behavior and high-temperature tensile performance of single-lap, single-bolt C/SiC composite and superalloy joint, by using the ABAQUS software. It was found that the initial stiffness of the CMC/superalloy hybrid bolted joints decreases with the rise of applied temperature under all bolt-hole clearance levels. However, the load-bearing capacity varies significantly with the initial clearance level and exposed temperature for the studied joint. The thermal expansion mismatch generated between the CMC and superalloy materials led to significant changes in the assembly preload and bolt-hole clearance as the high-temperature load is applied to the joint. The evolution in the thermostructural behavior upon temperature was then correlated with the variations in stiffness and failure load of the joints. The provided new findings are valuable for structural design and practical application of the hybrid CMC/superalloy bolted joints at high temperatures in next-generation aircrafts.


2013 ◽  
Vol 48 (25) ◽  
pp. 3091-3109 ◽  
Author(s):  
Jian Xu ◽  
Stepan Vladimirovitch Lomov ◽  
Ignaas Verpoest ◽  
Subbareddy Daggumati ◽  
Wim Van Paepegem ◽  
...  

2016 ◽  
Vol 51 (10) ◽  
pp. 1325-1331 ◽  
Author(s):  
Stephen B Clay ◽  
Stephen P Engelstad

This article introduces an Air Force Research Laboratory study, which performed static and fatigue benchmark exercises for nine composite progressive damage analysis methods. Air Force Research Laboratory is interested in exploring the feasibility of these progressive damage analysis methods to predict composite damage growth for the purposes of improved durability and damage tolerance analysis of composite aircraft structure. This article gives the background, goals, motivation, and guiding principles of the study and provides brief descriptions of the teams that participated and the tools that were utilized.


Sign in / Sign up

Export Citation Format

Share Document