scholarly journals Determination of design layer of rainfall for design of treatment facilities of surface runoff

Author(s):  
E D Palagin ◽  
M A Gridneva ◽  
P G Bykova
Author(s):  
V. Havryshchuk

Abstract. There are theoretical and experimental results of the study of the duration of surface runoff formation presented. The prospects of application of this method are defined at designing of sanitary technical measures on highways of public use and artificial constructions. There is prospective direction of increase of efficiency of sewerage rain network designing and local treatment facilities on highways defined. The issue of increasing the accuracy of hydraulic calculation has been studied. The main advantages of implementation of modern drainage solutions are investigated. It is proposed to use a monogram to determine the duration of the formation of surface concentration, in accordance with climatic characteristics.


Author(s):  
G. Variushina

Приводятся сведения о разработанных специалистами АО МосводоканалНИИпроект научных исследованиях и проектных решениях в области очистки поверхностных сточных вод с территории Москвы, причинах загрязнения водоисточников неочищенными поверхностными стоками в 1970х годах. Представлены основные характеристики комплексов глубокой очистки поверхностных стоков, разработанных проектов очистных сооружений для промышленных предприятий с площадью водосбора 0,3 1 5 10 и 15 га. Показано, что эффективность очистки поверхностных сточных вод соответствует требованиям, предъявляемым к водоемам рыбохозяйственного значения. При этом для обезвоживания осадка, образующегося в накопительном резервуаре очистных сооружений, в технологической схеме предусмотрена песковая площадка, а для сбора плавающих нефтепродуктов нефтеразделитель. Новизна разработанной технологии обезвреживания поверхностного стока и обработки осадка была подтверждена пятью патентами РФ, одобрена Госстроем РФ, Центральным управлением по рыбохозяйственной экспертизе и нормативам по сохранению, воспроизводству водных биологических ресурсов и акклиматизации, Городской санитарной службой Москвы и области, службами Москомприроды и Мосгосэкспертизы. Показан вклад специалистов лаборатории обработки природных, промышленнодождевых сточных вод и осадка в решение проблем очистки поверхностного стока. Приведена информация об истории развития и перспективных направлениях научной деятельности лаборатории, ее планах в организационнометодической и воспитательной работе с молодыми специалистами.Information on the research and design solutions developed by the experts of MosvodokanalNIIproject JSC in the field of surface runoff treatment from the territory of Moscow, the causes of water sources pollution with raw surface runoff in the 1970s. The basic characteristics of the complexes for the enhanced treatment of surface runoff, the developed projects of wastewater treatment facilities for industrial enterprises with a catchment area of 0.3 1 5 10 and 15 ha. It is shown that the effectiveness of surface runoff treatment meets the requirements to water bodies of commercial fishing importance. At the same time, for dewatering of sludge generated in the retention basin of wastewater treatment facilities, a grit dewatering bay is included into the process flow scheme, and an oil separator is used to collect floating oil products. The novelty of the developed technology for neutralization of surface runoff and sludge treatment has been acknowledged by five patents of the Russian Federation, approved by Gosstroy of the Russian Federation, the Central Department of Fisheries Examination and Review and Protection and Renewal and Acclimatization Standards, the Moscow City and Moscow Region Sanitary Service, Moskompriroda and Mosgosekspertiza services. The contribution of the research workers of the laboratory for the treatment of natural, industrialstorm wastewater and sludge processing to the solution of problems of surface runoff treatment is demonstrated. The information about the history of development and promising areas of research activity of the laboratory, its plans in the organizational, methodological and educational work with young professionals is given.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Heonsang Jeong ◽  
Jongtaek Park ◽  
Hyunook Kim

Nitrogen is an essential element in the environment. If excess nitrogen includingNH4 +is present in water, however, it can result in algae blooming and eventually the destruction of the aquatic ecosystem. Therefore, the determination ofNH4 +in streams, lakes, and effluents of the treatment facilities has long been carried out. The Nessler method is the most common spectrophotometric method to measureNH4 +in water. However, the result of the method becomes inaccurate if there are interfering substances such as Cl2, Cl−, hardness-causing compounds (e.g., Mg2+), and Fe2+in target water samples. In this study, therefore, the traditional Nessler method has been modified to eliminate the effects of interfering substances; the so-called MS was added to water samples. In addition, the polyvinyl alcohol reagent as a dispersing agent was added to water samples to increase the sensitivity and reproducibility of the method. The modified method could successfully analyzeNH4 +of water samples even with the interfering substance at high concentration.


2019 ◽  
Vol 97 ◽  
pp. 06019
Author(s):  
Zhanna Govorova ◽  
Ekaterina Muraveva ◽  
Yulia Isachkina ◽  
Vadim Govorov

Surface runoff from urban area is a potential source of pollution of water bodies. Characteristics of rainfall runoff in some cities of Russia and foreign countries are given in the article. Traditional wastewater treatment facilities include the mechanical removal of large items, debris and leaves; sand removal; water clarification in accumulative clarifying tanks; chemical dosing, contact filtration and deep purification in sorption filters. Four technological schemes were analyzed. Conceptual difference of the schemes is using a new construction of accumulative clarifying tanks and different types of filters with inert floating polysterene load (CFPZ-1, CFPZ (CS), AFPZ-4). The investigation results of pilot plant that simulates the purification process of surface runoff in clarifying, sorption and I and II step cartridge filters are given in the article. During the investigation period the water entering the pilot plant had the concentration of suspended solids – 81-180 mg/L, petroleum products – 2-8 mg/L, COD – 48-97 mg/L. Analysis of the dynamic of changes in the concentration of suspended solids and petroleum products in previously treated in accumulative clarifying tank water during the filter cycle at each step showed that purification efficiency in polystyrene load layer depends on the type and dose of flocculant, filter rate and duration of filtration. The investigation results were used for the development of recommendations for the intensification of operation of industrial filters and improving technological reliability of surface runoff treatment facilities.


2017 ◽  
Vol 1 (1) ◽  
pp. 61-66
Author(s):  
Tatiana Kaletova ◽  
Zuzana Nemetova
Keyword(s):  

Author(s):  
Cristina Manchado ◽  
Alejandro Roldán-Valcarce ◽  
Daniel Jato-Espino ◽  
Ignacio Andrés-Doménech

Surface runoff determination in urban areas is crucial to facilitate ex ante water planning, especially in the context of climate and land cover changes, which are increasing the frequency of floods, due to a combination of violent storms and increased imperviousness. To this end, the spatial identification of urban areas prone to runoff accumulation is essential, to guarantee effective water management in the future. Under these premises, this work sought to produce a tool for automated determination of urban surface runoff using a geographic information systems (GIS). This tool, which was designed as an ArcGIS add-in called ArcDrain, consists of the discretization of urban areas into subcatchments and the subsequent application of the rational method for runoff depth estimation. The formulation of this method directly depends on land cover type and soil permeability, thereby enabling the identification of areas with a low infiltration capacity. ArcDrain was tested using the city of Santander (northern Spain) as a case study. The results achieved demonstrated the accuracy of the tool for detecting high runoff rates and how the inclusion of mitigation measures in the form of sustainable drainage systems (SuDS) and green infrastructure (GI) can help reduce flood hazards in critical zones.


Sign in / Sign up

Export Citation Format

Share Document