scholarly journals Properties of eco-friendly composites: palm kernel shell treated with sodium bicarbonate filled recycled high-density polyethylene

Author(s):  
Nadiatul Husna ◽  
Bee Ying Lim ◽  
Chun Hong Voon ◽  
Pei Ling Teh
2016 ◽  
Vol 857 ◽  
pp. 191-195 ◽  
Author(s):  
A. Nadiatul Husna ◽  
Bee Ying Lim ◽  
H. Salmah ◽  
Chun Hong Voon

Palm kernel shells (PKS) filled recycled high density polyethylene (rHDPE) biocomposites were produced using melt mixing. The biocomposites were prepared on Brabender Plasticorder at temperature of 185 °C and rotor speed of 50 rpm by varying filler loading (0 to 40 phr). In this study, the effect of PKS loading on rheological properties and thermal stability of rHDPE/PKS were investigated. Rheological study of the biocomposites was carried out by means of capillary rheometer under temperature of 190 °C, 200 °C and 210 °C. Thermal properties of biocomposites were studied by using thermo gravimetric analysis (TGA). The rheological results showed that the flowability of the composite increased with increasing temperature. Meanwhile, the result of TGA showed that at higher PKS loading, rHDPE/PKS biocomposites had lower total weight loss. The thermal stability of the biocomposites was reduced due to the addition of filler loading.


2020 ◽  
Vol 20 (2) ◽  
pp. 27-35
Author(s):  
K. O. Nimako ◽  
A. Dwumfour ◽  
K. Mensah ◽  
P. Koshy ◽  
J. R. Dankwah

This research investigated the calcination behaviour of the Nsuta Rhodochrosite (MnCO3) in the presence and absence of end-of-life high density polyethylene (HDPE) using a custom-made palm kernel shell fired furnace. Samples of pulverised Nsuta rhodochrosite were heated rapidly for 30, 40, 50 and 60 minutes, coupled with temperature measurements to determine the maximum temperature attained in the fireclay crucible. The procedure at 60 min was repeated using three blends of rhodochrosite samples containing different masses of HDPE (30 g, 40 g and 50 g) and heated for an hour. For gas analyses studies during calcination, cylindrical compacts of rhodochrosite ore in a LECOTM crucible were heated rapidly with and without high density polyethylene (HDPE at C/O ratio = 1.0, 1.5, and 2.0) in a horizontal tube furnace for 600 s at 1150 °C under high purity argon gas and the off gas was continuously analysed for CH4, CO and CO2 using an online infrared gas analyser. The content of H2 in the off gas was detected using a GC3 gas chromatographic analyser equipped with a thermal conductivity detector. The Nsuta rhodochrosite ore was found to consist of a mixture of manganese II carbonate (MnCO3), silica (SiO2), mixed transition metal carbonate of the form Ca(Mn, Mg)(CO3)2 and mixed metal silicate of the form Ca0.6Mg1.94Si2O6. Calcination results indicated visible colour changes (from grey to dark brown), along with significant changes in the mass before and after calcination. In the absence and presence of the polymer, measured temperatures in the crucible ranged from 1001 °C to 1366 °C and 1361 °C to 1369 °C, respectively. Analyses by XRF showed marginal increase in the content of Mn in the calcined ore with HDPE addition. Gas analyses indicate that blending the carbonate with HDPE before heating results in significant decrease in the amount of CO2 emitted.   Keywords: Land Tenure Security, Registration, Spatial Data, Attribute Data


2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


2017 ◽  
Vol 16 (12) ◽  
pp. 2657-2663
Author(s):  
Jamaliah Idris ◽  
Siti Fadira Osman ◽  
Eyu Gaius ◽  
Chukwuekezie Christian

Sign in / Sign up

Export Citation Format

Share Document