scholarly journals Stabilization of mechanical system with holonomic servo constraints

Author(s):  
K Khusanov
Author(s):  
S. R. Rakhmanov ◽  
V. V. Povorotnii

To form a necessary geometry of a hollow billet to be rolled at a pipe rolling line, stable dynamics of the base equipment of the automatic mill working stand has a practical meaning. Among the forces, acting on its parts and elements, significant by value short-time dynamic loads are the least studied phenomena. These dynamic loads arise during transient interaction of the hollow billet, rollers, mandrel and other mill parts at the forced grip of the hollow billet. Basing of the calculation scheme and dynamic model of the mechanical system of the ТПА 350 automatic mill working stand was accomplished. A mathematical model of dynamics of the system “hollow billet (pipe) – working stand” within accepted calculation scheme and dynamic model of the mechanical system elaborated. Influence of technological load of the rolled hollow billet variation in time was accounted, as well as variation of the mechanical system mass, and rigidity of the ТПА 350 automatic mill working stand. Differential equations of oscillation movement for four-mass model of forked sub-systems of the automatic mill working stand were made up, results of their digital calculation quoted. Dynamic displacement of the stand elements in the inter-roller gap obtained, which enabled to estimate the results of amplitude and frequency characteristics of the branches of the mill rollers setting. It was defined by calculation, that the maximum amplitude of the forced oscillations of elements of the ТПА 350 automatic mill working stand within the inter-roller gap does not exceed 2 mm. It is much higher than the accepted value of adjusting parameters of the deformation center of the ТПА 350 automatic mill. A scheme of comprehensive modernization of the rollers setting in the ТПА 350 automatic mill working stand was proposed. It was shown, that increase of rigidity of rollers setting in the ТПА 350 automatic mill working stand enables to stabilize the amplitude of forced oscillations of the working stand elements within the inter-rollers gap and considerably decrease the induced nonuniform hollow billet wall thickness and increase quality of the rolled pipes at ТПА 350.


Author(s):  
David Julian Gonzalez Maldonado ◽  
Peter Hagedorn ◽  
Thiago Ritto ◽  
Rubens Sampaio ◽  
Artem Karev

Crop Science ◽  
1978 ◽  
Vol 18 (2) ◽  
pp. 351-352
Author(s):  
J. C. Freed ◽  
J. B. Bahrenfus ◽  
T. J. Bandstra ◽  
W. R. Fehr ◽  
R. C. Clark
Keyword(s):  

Author(s):  
Olivier Darrigol

This chapter recounts how Boltzmann reacted to Hermann Helmholtz’s analogy between thermodynamic systems and a special kind of mechanical system (the “monocyclic systems”) by grouping all attempts to relate thermodynamics to mechanics, including the kinetic-molecular analogy, into a family of partial analogies all derivable from what we would now call a microcanonical ensemble. At that time, Boltzmann regarded ensemble-based statistical mechanics as the royal road to the laws of thermal equilibrium (as we now do). In the same period, he returned to the Boltzmann equation and the H theorem in reply to Peter Guthrie Tait’s attack on the equipartition theorem. He also made a non-technical survey of the second law of thermodynamics seen as a law of probability increase.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 254
Author(s):  
Marwa Belhaj Salem ◽  
Mitra Fouladirad ◽  
Estelle Deloux

Recently, maintaining a complex mechanical system at the appropriate times is considered a significant task for reliability engineers and researchers. Moreover, the development of advanced mechanical systems and the dynamics of the operating environments raises the complexity of a system’s degradation behaviour. In this aspect, an efficient maintenance policy is of great importance, and a better modelling of the operating system’s degradation is essential. In this study, the non-monotonic degradation of a centrifugal pump system operating in the dynamic environment is considered and modelled using variance gamma stochastic process. The covariates are introduced to present the dynamic environmental effects and are modelled using a finite state Markov chain. The degradation of the system in the presence of covariates is modelled and prognostic results are analysed. Two machine learning algorithms k-nearest-neighbour (KNN) and neural network (NN) are applied to identify the various characteristics of degradation and the environmental conditions. A predefined degradation threshold is assigned and used to propose a prognostic result for each classification state. It was observed that this methodology shows promising prognostic results.


Sign in / Sign up

Export Citation Format

Share Document