scholarly journals Numerical assessment of a very high pressure ratio centrifugal impeller

Author(s):  
O Dumitrescu ◽  
V Drăgan ◽  
I Porumbel ◽  
B Gherman
Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Gernot Eisenlohr ◽  
Hartmut Krain ◽  
Franz-Arno Richter ◽  
Valentin Tiede

In an industrial research project of German and Swiss Turbo Compressor manufacturers a high pressure ratio centrifugal impeller was designed and investigated. Performance measurements and extensive laser measurements (L2F) of the flow field upstream, along the blade passage and downstream of the impeller have been carried out. In addition to that, 3D calculations have been performed, mainly for the design point. Results have been presented by Krain et al., 1995 and 1998, Eisenlohr et al., 1998 and Hah et al.,1999. During the design period of this impeller a radial blade at the inlet region was mandatory to avoid a rub at the shroud due to stress reasons. The measurements and the 3D calculations performed later, however, showed a flow separation at the hub near the leading edge due to too high incidence. Additionally a rather large exit width and a high shroud curvature near the exit caused a flow separation near the exit, which is enlarged by the radially transported wake of the already addressed hub separation. Changes to the hub blade angle distribution to reduce the hub incidence and an adaptation of the shroud blade angle distribution for the same impeller mass-flow at the design point were investigated by means of 3D calculations first with the same contours at hub and shroud; this was followed by calculations with a major change of the shroud contour including an exit width change with a minor variation of the hub contour. These calculations showed encouraging results; some of them will be presented in conjunction with the geometry data of the original impeller design.


Author(s):  
Zhendong Guo ◽  
Zhiming Zhou ◽  
Liming Song ◽  
Jun Li ◽  
Zhenping Feng

The design of high pressure ratio impellers is a challenging task. SRV2-O, a typical high pressure ratio centrifugal impeller is selected for the research. A good understanding of flow characteristics in the passage of SRV2-O is obtained by using 3D Reynolds-Averaged Navier-Stokes (RANS) solutions upon numerical validation. It confirms that tip leakage flow and shock wave boundary layer interactions produce the primary energy loss in this transonic impeller. A 3D multi-objective aerodynamic optimization and data mining method named BMOE is presented and programmed by integrating a self-adaptive multi-objective differential evolution algorithm SMODE, 3D blade parameterization method based on non-uniformed B-Spline, RANS solver technique and self-organization map (SOM) based data mining technique. Using BMOE, multi-objective aerodynamic design optimization and data mining is performed for SRV2-O. 14 Pareto solutions are obtained for maximizing isentropic efficiency and total pressure ratio of the impeller. Three typical Pareto solutions, Design A with the highest efficiency, Design B with the higher efficiency and larger pressure ratio and Design C with the maximum pressure ratio, are analyzed. Detailed analysis indicates that the aerodynamic performance of optimized designs is greatly improved. Furthermore, by SOM-based data mining on optimization results, trade-off relation between objective functions and parameter influence mechanism on impeller aerodynamic performance are visualized and explored.


2018 ◽  
Author(s):  
Valeriu Drăgan ◽  
Oana Dumitrescu ◽  
Ion Mălael ◽  
Ionuţ Porumbel ◽  
Bogdan Gherman ◽  
...  

Author(s):  
Gernot Eisenlohr ◽  
Peter Dalbert ◽  
Hartmut Krain ◽  
Hartwig Pröll ◽  
Franz-Arno Richter ◽  
...  

In an industrial research project of German and Swiss Turbo Compressor manufacturers a high pressure ratio centrifugal impeller was designed and investigated. Performance measurements and extensive laser measurements (L2F) of the flow field upstream, inside and downstream of the rotor have been carried out. In addition to that, 3D calculations have been performed, mainly for the design point. Some earlier results have been presented by Krain et al., 1995. With four different viscous 3D-solvers, used in companies of the group, calculations for the design speed were carried out to investigate the suitability of these programs in the various design procedures. Special attention was given to the area from rotor inlet up to the splitter blades. The results for the flow field obtained with the four viscous 3D-Solvers are compared with one another and with the L2F-measurements.


2000 ◽  
Author(s):  
Tarek Mekhail ◽  
Du Zhao Hui ◽  
Chen Han Ping ◽  
Willem Janson

Abstract The flow inside a centrifugal impeller has various complex three dimensional phenomena (flow separation, jet-wake structure, shock wave, etc.). In this study, the internal flow field calculation of Samsung, high pressure ratio, high speed, centrifugal impeller with splitter blades is obtained by commercially available CFX-Tascflow code with CFX-Turbogrid for grid generation. The results are compared to that obtained previously by Denton and Dawes codes. The impeller is used in the first stage centrifugal compressor of an industrial gas turbine. The CFX-Tascflow results showed some differences Mach number contours. Also, the calculations are performed for Krain’s backswept impeller and the results are compared to the experimental measurements. Simulation of tip clearance has been done and the results were in a good agreement with the previous experiments.


Author(s):  
Zhendong Guo ◽  
Liming Song ◽  
Zhiming Zhou ◽  
Jun Li ◽  
Zhenping Feng

An automated three-dimensional multi-objective optimization and data mining method is presented by integrating a self-adaptive multi-objective differential evolution algorithm (SMODE), 3D parameterization method for blade profile and meridional channel, Reynolds-averaged Navier–Stokes (RANS) solver technique and data mining technique of self-organizing map (SOM). Using this method, redesign of a high pressure ratio centrifugal impeller is conducted. After optimization, 16 optimal Pareto solutions are obtained. Detailed aerodynamic analysis indicates that the aerodynamic performance of the optimal Pareto solutions is greatly improved. By SOM-based data mining on optimized solutions, the interactions among objective functions and significant design variables are analyzed. The mechanism behind parameter interactions is also analyzed by comparing the data mining results with the performance of typical designs.


Author(s):  
JongSik Oh ◽  
Charles W. Buckley ◽  
Giri L. Agrawal

Blade lean and sweep are additional degrees of freedom for the three dimensional blade design. When compared to blade sweep, the influence of blade lean on the performance is not extensively described in the public literature. The effects of blade lean on the aerodynamic performance of a high-pressure ratio centrifugal impeller were investigated using a CFD (Computational Fluid Dynamics) approach. For total of 15 variations of blade lean given at the impeller inlet and outlet, while blade angles at the impeller inlet and outlet were unchanged, numerical solutions of the impeller with a vaneless diffuser were obtained at the design speed from a maximum choke flow to a minimum flow available. Compressor performance maps were generated to compare overall characteristics, and details of internal flow structure at 5 different quasi-orthogonal planes were investigated to see the effects of blade lean on the development of secondary flows. It was found that a positive lean at the impeller exit shroud helps mitigate the wake region to contribute to more uniform flows, resulting in an increase of the impeller pressure and efficiency. A negative lean at the impeller exit causes a limited head rise due to a reduced blade loading on the shroud. A negative inlet lean at the shroud provided the worst performance.


2013 ◽  
Vol 56 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
XinQian Zheng ◽  
Yun Lin ◽  
BinLin Gan ◽  
WeiLin Zhuge ◽  
YangJun Zhang

Sign in / Sign up

Export Citation Format

Share Document