scholarly journals Analysis of the Transonic Flow at the Inlet of a High Pressure Ratio Centrifugal Impeller

Author(s):  
Gernot Eisenlohr ◽  
Peter Dalbert ◽  
Hartmut Krain ◽  
Hartwig Pröll ◽  
Franz-Arno Richter ◽  
...  

In an industrial research project of German and Swiss Turbo Compressor manufacturers a high pressure ratio centrifugal impeller was designed and investigated. Performance measurements and extensive laser measurements (L2F) of the flow field upstream, inside and downstream of the rotor have been carried out. In addition to that, 3D calculations have been performed, mainly for the design point. Some earlier results have been presented by Krain et al., 1995. With four different viscous 3D-solvers, used in companies of the group, calculations for the design speed were carried out to investigate the suitability of these programs in the various design procedures. Special attention was given to the area from rotor inlet up to the splitter blades. The results for the flow field obtained with the four viscous 3D-Solvers are compared with one another and with the L2F-measurements.

Author(s):  
H. Krain ◽  
B. Hoffmann ◽  
K.-H. Rohne ◽  
G. Eisenlohr ◽  
F.-A. Richter

The paper describes the development and the experimental as well as theoretical investigation of a new transonic, high specific speed centrifugal compressor rotor of 6.2:1 pressure ratio. Performance measurement results, laser measurements and calculated 3D results are shown for the new rotor and are compared with the corresponding data of a same type predecessor rotor. A 2% gain in stage efficiency and a 0.2 bar increase in stage pressure ratio are found at design speed by performance measurements. With the help of optical measurements and 3D stage calculations it is shown that the flow at the exit of the new rotor is more uniform/homogeneous. The degree of uniformity increases with decreasing pressure ratio, i.e. in the compressor part load region. Deeper insight into the internal rotor and the vaned diffuser flow is obtained from the 3D stage calculations showing less flow separation in the new rotor but significant secondary flow in the small span diffuser. The investigations are indicating that a further improvement of stage performance seems to be possible by an additional optimization of the vaned diffuser.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Gernot Eisenlohr ◽  
Hartmut Krain ◽  
Franz-Arno Richter ◽  
Valentin Tiede

In an industrial research project of German and Swiss Turbo Compressor manufacturers a high pressure ratio centrifugal impeller was designed and investigated. Performance measurements and extensive laser measurements (L2F) of the flow field upstream, along the blade passage and downstream of the impeller have been carried out. In addition to that, 3D calculations have been performed, mainly for the design point. Results have been presented by Krain et al., 1995 and 1998, Eisenlohr et al., 1998 and Hah et al.,1999. During the design period of this impeller a radial blade at the inlet region was mandatory to avoid a rub at the shroud due to stress reasons. The measurements and the 3D calculations performed later, however, showed a flow separation at the hub near the leading edge due to too high incidence. Additionally a rather large exit width and a high shroud curvature near the exit caused a flow separation near the exit, which is enlarged by the radially transported wake of the already addressed hub separation. Changes to the hub blade angle distribution to reduce the hub incidence and an adaptation of the shroud blade angle distribution for the same impeller mass-flow at the design point were investigated by means of 3D calculations first with the same contours at hub and shroud; this was followed by calculations with a major change of the shroud contour including an exit width change with a minor variation of the hub contour. These calculations showed encouraging results; some of them will be presented in conjunction with the geometry data of the original impeller design.


Author(s):  
Zhendong Guo ◽  
Zhiming Zhou ◽  
Liming Song ◽  
Jun Li ◽  
Zhenping Feng

The design of high pressure ratio impellers is a challenging task. SRV2-O, a typical high pressure ratio centrifugal impeller is selected for the research. A good understanding of flow characteristics in the passage of SRV2-O is obtained by using 3D Reynolds-Averaged Navier-Stokes (RANS) solutions upon numerical validation. It confirms that tip leakage flow and shock wave boundary layer interactions produce the primary energy loss in this transonic impeller. A 3D multi-objective aerodynamic optimization and data mining method named BMOE is presented and programmed by integrating a self-adaptive multi-objective differential evolution algorithm SMODE, 3D blade parameterization method based on non-uniformed B-Spline, RANS solver technique and self-organization map (SOM) based data mining technique. Using BMOE, multi-objective aerodynamic design optimization and data mining is performed for SRV2-O. 14 Pareto solutions are obtained for maximizing isentropic efficiency and total pressure ratio of the impeller. Three typical Pareto solutions, Design A with the highest efficiency, Design B with the higher efficiency and larger pressure ratio and Design C with the maximum pressure ratio, are analyzed. Detailed analysis indicates that the aerodynamic performance of optimized designs is greatly improved. Furthermore, by SOM-based data mining on optimization results, trade-off relation between objective functions and parameter influence mechanism on impeller aerodynamic performance are visualized and explored.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Weilin Yi ◽  
Hongliang Cheng

The optimization of high-pressure ratio impeller with splitter blades is difficult because of large-scale design parameters, high time cost, and complex flow field. So few relative works are published. In this paper, an engineering-applied centrifugal impeller with ultrahigh pressure ratio 9 was selected as datum geometry. One kind of advanced optimization strategy including the parameterization of impeller with 41 parameters, high-quality CFD simulation, deep machine learning model based on SVR (Support Vector Machine), random forest, and multipoint genetic algorithm (MPGA) were set up based on the combination of commercial software and in-house python code. The optimization objective is to maximize the peak efficiency with the constraints of pressure-ratio at near stall point and choked mass flow. Results show that the peak efficiency increases by 1.24% and the overall performance is improved simultaneously. By comparing the details of the flow field, it is found that the weakening of the strength of shock wave, reduction of tip leakage flow rate near the leading edge, separation region near the root of leading edge, and more homogenous outlet flow distributions are the main reasons for performance improvement. It verified the reliability of the SVR-MPGA model for multiparameter optimization of high aerodynamic loading impeller and revealed the probable performance improvement pattern.


Author(s):  
Ali Merchant ◽  
Jack L. Kerrebrock ◽  
John J. Adamczyk ◽  
Edward Braunsheidel

The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 feet/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the 3D viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5% of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off-design conditions are also discussed.


2000 ◽  
Author(s):  
Tarek Mekhail ◽  
Du Zhao Hui ◽  
Chen Han Ping ◽  
Willem Janson

Abstract The flow inside a centrifugal impeller has various complex three dimensional phenomena (flow separation, jet-wake structure, shock wave, etc.). In this study, the internal flow field calculation of Samsung, high pressure ratio, high speed, centrifugal impeller with splitter blades is obtained by commercially available CFX-Tascflow code with CFX-Turbogrid for grid generation. The results are compared to that obtained previously by Denton and Dawes codes. The impeller is used in the first stage centrifugal compressor of an industrial gas turbine. The CFX-Tascflow results showed some differences Mach number contours. Also, the calculations are performed for Krain’s backswept impeller and the results are compared to the experimental measurements. Simulation of tip clearance has been done and the results were in a good agreement with the previous experiments.


Author(s):  
Zhendong Guo ◽  
Liming Song ◽  
Zhiming Zhou ◽  
Jun Li ◽  
Zhenping Feng

An automated three-dimensional multi-objective optimization and data mining method is presented by integrating a self-adaptive multi-objective differential evolution algorithm (SMODE), 3D parameterization method for blade profile and meridional channel, Reynolds-averaged Navier–Stokes (RANS) solver technique and data mining technique of self-organizing map (SOM). Using this method, redesign of a high pressure ratio centrifugal impeller is conducted. After optimization, 16 optimal Pareto solutions are obtained. Detailed aerodynamic analysis indicates that the aerodynamic performance of the optimal Pareto solutions is greatly improved. By SOM-based data mining on optimized solutions, the interactions among objective functions and significant design variables are analyzed. The mechanism behind parameter interactions is also analyzed by comparing the data mining results with the performance of typical designs.


Sign in / Sign up

Export Citation Format

Share Document