scholarly journals Influence of design and technological parameters of a high-speed paddle mixer on the quality of dry building mixes

Author(s):  
Yu V Brazhnik ◽  
N P Nesmeyanov ◽  
A A Brazhnik
Author(s):  
S. Khanin ◽  
N. Kikin ◽  
O. Mordovskaya

Paddle mixers with horizontal shafts are common at building materials enterprises for the preparation of concretes, mortars, dry mortars. A new design of a horizontal paddle mixer with rod elements located in front of the working surfaces of the blades, changing the trajectories of material particles, increasing their mobility, which leads to an increase in the degree of homogeneity of the mixed material, is considered. The aim of the study was to assess the influence of rod elements on the quality of preparation of a cement-sand mixture, to establish patterns of influence on it by the design and technological parameters of a two-shaft paddle mixer and to determine the areas of their rational values. The following tasks have been solved. A bench installation of a two-shaft horizontal paddle mixer with rod elements has been developed, on which experimental studies have been carried out on the preparation of dry cement-sand mixtures. For the criterion characterizing the quality of the mixture, the ultimate compressive strength of the prism specimens made from it is adopted. Regression equations are obtained that adequately describe the compressive strength of prism samples from the design and technological parameters of the mixer: the angle of the blades, the distance from the working surfaces of the blades to the rod elements, the rotational speed of the blade shafts, and their analysis is performed. The analysis of the change in the ultimate compressive strength of the prism specimens from the parameters under study is carried out, the rational ranges of their values are determined. It was found that a mixer with rod elements allows to obtain a dry cement-sand mixture, products from which have a higher compressive strength. During the work, the method of mathematical planning of experiments was used. As a result of the study, an assessment of the influence of rod elements on the quality of preparation of a cement-sand mixture was carried out, the regularities of the influence on it of the design and technological parameters of a two-shaft paddle mixer and the area of their rational values were established.


2006 ◽  
Vol 304-305 ◽  
pp. 364-368 ◽  
Author(s):  
Ke Zhang ◽  
Yu Hou Wu ◽  
H. Sun ◽  
S.H. Li

One of the most applications of HIPSN(Hot-Isocratic Pressed Silicon Nitride) ceramic ball bearings is applied to the high-speed spindle of numerical control machine tools and high-speed precise mechanics. However, it is very difficult to process the HIPSN ceramic ball bearing. In this paper, a new grinding process method, taper rubbing method, is applied to process the HIPSN ceramic ball. Mechanical analysis of taper rubbing method is given, and the influence of grinding parameters on the ceramic material excision rate, surface quality of ceramic ball and wear and tear ratio of diamond wheel is studied by taper rubbing method. The experimental results show that the HISPN ceramic balls of G3 and G5 are obtained with taper rubbing method by properly controlling the motion of HIPSN ceramic balls and selecting reasonable processing technological parameters.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1257
Author(s):  
Alexey Dorokhov ◽  
Alexander Aksenov ◽  
Alexey Sibirev ◽  
Nikolay Sazonov ◽  
Maxim Mosyakov ◽  
...  

The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


Author(s):  
Adel Abidi ◽  
Sahbi Ben Salem ◽  
Mohamed Athmane Yallese

Among advanced cutting methods, High Speed Milling (HSM) is often recommended to improve the productivity and to reduce the costs of machining parts. As every cutting process, HSM is characterized by some defects like surface roughness and delamination are the main defects generated in composite materials. The aim of this experimental work is the studying of the machining quality of woven Carbon fiber reinforced plastics (CFRP) using the HSM technology. Experiments were done using different machining parameters combinations to make opened holes in CFRP laminates. This study investigated the effect of cutting speed, orbital feed speed, hole diameter on the delamination defect and surface roughness responses generated in the drilled holes. The design of experimental tests was generated using the approach of Central Composite Design (CCD). The characterization of these responses was treated with the Analysis of variance (ANOVA) and Response surface methodology (RSM). Results showed that the surface roughness is highly affected by the orbital feed speed (F) with contribution of 22.45%. The delamination factor at entry and exit of holes is strongly influenced by the hole diameter D (25.97% and 57.43%) respectively. The developed model equations gave a good correlation between the empirical and predicted results. The optimization of the milling parameters was treated using desirability function to minimize the surface roughness (Ra) and the delamination factor simultaneously.


Author(s):  
Nguyen Duy Canh ◽  
Nguyen Van Canh ◽  
Pham Xuan Hong ◽  
Nguyen Ngoc Hue ◽  
Tran Dinh Duy

2013 ◽  
Vol 734-737 ◽  
pp. 1910-1914 ◽  
Author(s):  
Qiao Zhi Zhao ◽  
Qing You Yan

China is developing at relatively high speed, not only the regional development speed should be focused upon, but also the environmental impact of economic growth should be paid attention to, especially the level change of carbon dioxide emission. To some degree, quantity of carbon dioxide emission has become one of the most important indexes for measuring quality of a nations economic growth. Thus, this thesis is trying to analyze the driving relations between economic growth and carbon dioxide. Upon STIRPAT model, ridge regression method and elasticity theory are applied to analyze the influencing factors of carbon dioxide quantity such as the population quantity, Chinas urbanization process, per capita GDP, energy density and the percentage of the secondary industry. Correspondingly, based on the different influencing variables to carbon dioxide emission quantity, needy measures are brought out to control and decrease emissions. Feasible suggestions are trying to improve Chinas economic development quality.


1999 ◽  
Vol 5 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Dingjun Cui ◽  
Ian A. Craighead

The requirements for a special approach for the quality assessment of small high-speed centrifugal fans are outlined and a new parameter designating the noise levels from the product in comprehensive form will be discussed and described as a criterion for such quality assessment.By applying techniques of signal processing and condition monitoring, the sources of the vibration and noise in different sections of the product can be identified, then the noise from each source from different components can be determined. Using this criterion, more aspects of the quality of the products can be assessed and suggestions to improve the quality of the products can be made. Finally, the assessment of a number ofvacuum cleaner motor/fan units available in the commercial market will be presented and compared with conventional specifications. It will be shown that the new parameter provides a more useful indication of appliance quality.


1999 ◽  
Vol 122 (3) ◽  
pp. 556-561 ◽  
Author(s):  
X. Yan ◽  
K. Shirase ◽  
M. Hirao ◽  
T. Yasui

The productivity of machining centers is influenced inherently by the quality of NC programs. To evaluate productivity, first an effective feedrate factor and a productivity evaluation factor are proposed. It has been found that in high-speed machining, these two factors depend on a kinematic factor which is a function of (1) command feedrate, (2) average per-block travel of the tool, (3) moving vectorial variation of the tool, and (4) ac/deceleration or time constants. Then an NC program simulator has been developed to evaluate productivity. With the simulator, the machining time can be calculated accurately and the cutting conditions can be extracted. Finally, three NC programs were implemented on high-speed machining centers and analyzed by the simulator. It was found that in mold and die machining, the productivity can be improved by increasing the acceleration and average travel and reducing the vectorial variation of the tool rather than the command feedrate. [S1087-1357(00)01303-4]


Sign in / Sign up

Export Citation Format

Share Document