scholarly journals 3D Nonlinear Analysis of Precast Prestressed Hollow Core Slab

Author(s):  
Ivan Hollý ◽  
Iyad Abrahoim ◽  
Ľudovít Fillo
2012 ◽  
Vol 5 (6) ◽  
pp. 848-873 ◽  
Author(s):  
M. N. Kataoka ◽  
M. A. Ferreira ◽  
A. L. H. C. El Debs

Due to the large increase in the use of precast concrete structures in multistory buildings, this work covers a study on the behavior of beam-column connection with emphasis on the continuity provided by the slab reinforcement. Two prototypes were tested, each one with a different detail of the continuity reinforcement distribution. In both connections, the steel area used on the concrete cover of the hollow core slab was the same, varying the amount of bars that passed through the column and the ones that were placed adjacent to the column. The experimental results showed that the connection with bars adjacent to the column presented stiffness increase and a better cracking control. According to the classification the two tested connections can be considered semi-rigid.


2013 ◽  
Vol 6 (6) ◽  
pp. 903-932
Author(s):  
A. P. Santos ◽  
M. A. Ferreira ◽  
R. C. Carvalho ◽  
L. M. Pinheiro

The structural designs of floors formed by hollow core slabs usually consider these as simply-supported slabs. In recent years there have been project changes and hollow core slabs with continuity are widely used. The objective of this study is to suggest a way to calculate the reinforcement bars to be used in tests with continuity provided by a structural topping. Thus, this paper presents a method based on the maximum positive resistance moment and maximum shear strength of a hollow core slab. The method is applied to a test in hollow core slab specimens which have the following dimensions: 2 m width, 6 m long, and 21 cm high. The results indicated that the method was satisfactory to the performed test, and can therefore be applied to the other test configurations or even designs.


2020 ◽  
Vol 8 (6) ◽  
pp. 4973-4977

The building norms and standards of Uzbekistan on the reinforced concrete structures do not regulate the design of hollow-core slabs of formwork-free shaping, reinforced with prestressed wire reinforcement. The manufacturing technology of such slabs allows creating a wide range of products that increase the possibility of their use in various structural systems in residential, civil and industrial buildings, but in non-seismic areas only. The aim of this work is to develop a constructive solution for the cross section of a prestressed hollow-core floor slab of bench formwork-free shaping, reinforced with high-strength wire reinforcement, in order to create a wide range of products intended for construction in seismic areas. To achieve the goal, the problem of determining the optimal combination of height and configuration parameters of the cross section of such a slab is solved, meeting the normalized operational requirements and limitations of earthquake-resistant building standards. The main variable parameters are the height and the void degree of the section, characterized by the size and shape of voids. In calculating the cross-section of a hollow-core slab when substantiating the theoretical basis for the calculation, the cross section is reduced to the equivalent I-section. As a result of research, a constructive solution was developed for the slab cross section of the maximum parameter values (the span, operational load) set by the customer. The parameters of the slab cross-section are: the height 190 mm, the hollowness 38%, the height of the upper thickened flange (compared with the height of the lower flange) of the given section is 0.27h, the height of the lower flange is 0.17h, the reduced (total) thickness of all ribs “b” is 0.32 of the width of the upper flange. The voids in the section along the height of the slab are arranged asymmetrically. A patent for a utility model has been received for the proposed constructive solution of the slab cross section.


Author(s):  
Diego Maria Barbieri ◽  
Yuechi Chen ◽  
Enrico Mazzarolo ◽  
Bruno Briseghella ◽  
Angelo Marcello Tarantino

Hollow core slab bridges are constructed by placing prefabricated or prestressed box beams adjacent to each other, grouting the small longitudinal space (hinge-joint) between the slabs and casting a reinforced concrete deck. The longitudinal cracking appearing at hinge-joint locations leads to a premature deterioration of the deck. This paper presents a theoretical and experimental study of a hollow core slab bridge composed of three beams and a cast-in-place deck. A real-size specimen was built according to Chinese code specifications. The behavior of the longitudinal joints was investigated by applying the standard vehicle load. The tests do not highlight any longitudinal cracks. A finite element model was created from the experimental data. A finite element parametric analysis revealed some practical design indications regarding the following inputs: deck thickness, concrete strength, and hinge-joint steel bars. Furthermore, these analyses testify that C-shape and X-shape stirrups do not play an active role in preventing the joint longitudinal cracks. This research confirms the reliability of the design method, at least for static loads, while further studies are needed to investigate the effect of both periodical loadings and different temperatures on upper and lower surfaces of the beams.


2017 ◽  
Vol 101 ◽  
pp. 01017 ◽  
Author(s):  
Gambiro Soeprapto ◽  
Mukhlis Sunarso ◽  
Sumarsono ◽  
Ferryandy Murdono ◽  
Winda Agustin ◽  
...  

2019 ◽  
Vol 145 (8) ◽  
pp. 04019076
Author(s):  
Eliza Feidaki ◽  
George Vasdravellis ◽  
Jun He ◽  
Sihao Wang

2014 ◽  
Vol 14 (3) ◽  
pp. 211-231 ◽  
Author(s):  
Deuck Hang Lee ◽  
Min-Kook Park ◽  
Jae-Yuel Oh ◽  
Kang Su Kim ◽  
Ju-Hyeuk Im ◽  
...  

2014 ◽  
Vol 567 ◽  
pp. 637-641 ◽  
Author(s):  
Mohd Zakwan Ramli ◽  
Harlina Mohd Mahayudin ◽  
G. Hayder ◽  
Z.M. Hafiz ◽  
M. Daud ◽  
...  

There are several issues related to the implementation of new Industrialised Building System (IBS) technology in Malaysia which some of them are the awareness among industry players, and lack of development on the new technology in the industry. The main constraint that has always been discussed by the IBS players is time and cost. To have more reliable product or technology in terms of cost and time, it is important to craft and develop new idea as well as technology in our own country. The objective of this study was to highlight the cost comparison between cast in-situ concrete slab and hollow core slab (lightweight) which it can be a starting point for future research on the development of new lightweight IBS technology in Malaysia to get the most reliable cost with latest technology by using local resources. Informations on costs and work durations are collected and analysed between two floors using two different construction methods (hollow core slab and conventional concrete slab). Hollow core slab (lightweight IBS) has similar or less cost with shorter construction period (30% shorter) for the project.


Sign in / Sign up

Export Citation Format

Share Document