scholarly journals Foam stability using silica coated nanoparticle for enhanced oil recovery

Author(s):  
M A Zailan ◽  
M Z M. Noor ◽  
T A. O Ganat
Author(s):  
Ming Zhou ◽  
Juncheng Bu ◽  
Jie Wang ◽  
Xiao Guo ◽  
Jie Huang ◽  
...  

Poly (MSt-MMA) nanosphere as foam stabilizing agent was synthesized by emulsion polymerization. The three phase foam was prepared with Disodium 4-Dodecyl-2,4′-Oxydiben Zenesulfonate (DOZS) as foaming agent, Hydrolyzed Polyacrylamide (HPAM) and synthesized poly (MSt-MMA) nanospheres as the mixed foam stabilizing agents. It had outstanding foaming performance and foam stability. The optimal three phase foam system consisting of 0.12 wt% HPAM, 0.04 wt% poly (MSt-MMA) nanospheres and 0.12 wt% DOZS by orthogonal experiment, had high apparent viscosity, which showed that three components had a very good synergistic effect. The three phase foam’s temperature tolerance and salt tolerance were researched in laboratory tests. Flooding oil experiment showed that the average displacement efficiency of three phase foam system was 16.1 wt% in single core experiments and 21.7 wt% in double core experiments. Resistance coefficient of low permeability core was more than those of high permeability core, but their residual resistance coefficients were small. The results of core experiment and pilot test indicated that the three phase foam had good profile control ability and generated low damage to the low permeability layer for extra-low permeability reservoirs. Three phase foam flooding has great prospects for Enhanced Oil Recovery (EOR) in extra-low permeability reservoirs.


2014 ◽  
Vol 548-549 ◽  
pp. 1876-1880 ◽  
Author(s):  
T.A.T. Mohd ◽  
A. H. M. Muhayyidin ◽  
Nurul Aimi Ghazali ◽  
M.Z. Shahruddin ◽  
N. Alias ◽  
...  

Foam flooding is an established approach in Enhanced Oil Recovery (EOR) to recover a significant quantity of the residual oil left in the reservoir after primary and secondary recovery. However, foam flooding faces various problems due to low viscosity effect, which reduces its efficiency in recovering oil. Using surfactant to stabilize CO2foam may reduce mobility and improve areal and vertical sweep efficiency, but the potential weaknesses are such that high surfactant retention in porous media and unstable foam properties under high temperature reservoir conditions. Nanoparticles have higher adhesion energy to the fluid interface, which potentially stabilize longer lasting foams. Thus, this paper is aimed to investigate the CO2foam stability and mobility characteristics at different concentration of nanosilica, brine and surfactant. Foam generator has been used to generate CO2foam and analyze its stability under varying nanosilica concentration from 100 - 5000 ppm, while brine salinity and surfactant concentration ranging from 0 to 2.0 wt% NaCl and 0 – 10000 ppm, respectively. Foam stability was investigated through observation of the foam bubble size and the reduction of foam height inside the observation tube. The mobility was reduced as the concentration of nanosilica increased with the presence of surfactant. After 150 minutes of observation, the generated foam height reduced by 10%. Liquid with the presence of both silica nanoparticles and surfactant generated more stable foam with lower mobility. It can be concluded that the increase in concentration of nanosilica and addition of surfactant provided significant effects on the foam stability and mobility, which could enhance oil recovery.


2016 ◽  
Vol 1133 ◽  
pp. 634-638 ◽  
Author(s):  
Mudassar Mumtaz ◽  
Isa Mohd Tan ◽  
Muhammad Mushtaq ◽  
Muhammad Sagir

—Foam stability and mobility reduction are the key parameters for foam assisted enhanced oil recovery. The harsh conditions such as high temperature, pressure and salinity present in an oil reservoir tend to destabilise the foam leading to poor sweep efficiency. Screening for the best performing foaming recipes has been performed to ascertain foam stability in the presence and absence of oil. Static foam test has been performed in order to study the foam stability and foam oil interactions at 90°C. Two anionic surfactants, alpha olefin sulphonate (AOS14-16) and methyl ester sulphonate (MES16-18) were mixed with betaine (foam booster) in different proportions to design the formulations. In addition to the ternary formulations, binary formulation involving surfactant and betaine were also evaluated for foam stability. For the study of oil effects on foaming performance of surfactant formulation, n-decane, diesel and Dulang crude oil are used. The recipes were evaluated by static foam tests to note the foam height and endurance time. It was found that the anionic surfactant played a major role in foam stability and the betaine was found less significant. However, the betaine alone was found effective for foaming and was poor for endurance time. While in mixture, the surfactant and betaine were found to interact strongly and a profound synergistic effect was noted. During oil interaction studies, the alkane type oils of low molecular weight become solubilised with surfactant molecule forming an emulsion and hence decimate the foam stability. However, higher alkanes with molecular chain more than ten carbon atoms (decane) stabilised the foam because of low solubilisation efficiency between surfactant and oil to form emulsions. The obtained results of the designed experiment have been analysed and discussed in detail to understand the contribution of individual component as well as their interactions with each other in order to stabilize foams.Keywords—Static Foam, Foam-Oil interactions, AOS, MES, Enhanced Oil Recovery


2019 ◽  
Vol 16 (3) ◽  
pp. 412-418 ◽  
Author(s):  
Nurul Suhana Abd Rahim ◽  
Ismail Mohd Saaid ◽  
Abubakar Abubakar Umar

Purpose Application of foam in enhanced oil recovery requires a production of foam that is strong and stable enough to withstand a long period. There are numerous factors that may affect the performance of foam, among which is temperature. Therefore, this study aims to observe the foam performance at different temperature by evaluating the foamability and the stability of the foam. Design/methodology/approach In this study, bulk foam test using FoamScan was conducted to examine the effect of temperature on foam in the presence of crude oil. Nitrogen gas was sparged through the mixture of crude oil, an in-house developed surfactant, and sodium chloride solution as the brine at different temperatures to produce foam at a certain height. The crude oil was extracted from an oilfield in East Malaysia and the in-house developed surfactant was a mixture of amphoteric and anionic surfactants. A camera continuously recorded the height of foam during the generation and the collapse of the foam. The foamability and foam stability properties of each sample were taken as the indicators for foam performance. Furthermore, the entering, spreading and bridging analysis was run to observe the effect of the presence of crude oil on foam performance. Findings In general, the higher the temperature, the less stable the foam is. As the stability of foam is associated with the rate of liquid drainage, it was observed that as temperature increases, the rate of liquid drainage also increases. On the other hand, the entering, spreading and bridging analysis shows that there is entering of oil droplet happening on the interface of foam film that may promote the rupture of the foam film even more. Originality/value It was found that the temperature has a small impact on foamability, whereas the foam stability was significantly affected by the temperature. Therefore, it can be concluded that foamability is not necessarily interrelated to foam stability, contradicting to the findings of few authors.


Author(s):  
Muhammad Khan Memon ◽  
Ubedullah Ansari ◽  
Habib U Zaman Memon

The residual oil after primary or secondary oil recovery can be recovered by the methods of EOR (Enhanced Oil Recovery). The objective of this study is screening the surfactants that generate maximum stable foam in the presence of brine salinity at 92oC. Laboratory experiments have been performed to examine and compare the stability of generated foam by individual and blended surfactants in the synthetic brine water. AOS C14-16 (Alpha Olefin Sulfonate) and SDS (Sodium Dodecyl Sulfonate) were selected as main surfactants. Aqueous stability test of AOS C14-16 and SDS with brine water salinity 62070ppm was performed at 92oC. AAS (Alcohol Alkoxy Sulfate) was blended with SDS and AOS C14-16. The solution was stable in the presence of brine salinity at same conditions. Salt tolerance experimental study revealed that AOS C14-16 did not produce precipitates at 92oC. Further, the foam stability of surfactant blend was performed. Result shows that, the maximum life time of generated foam was observed by using blend of 0.2wt% SDS+0.2wt% AOS+0.2wt% AS-1246 and 0.2wt% AOS+0.2wt% IOSC15-18+0.2wt% AAS surfactants as compared to the foam generated by individual surfactants. The success of generated foam by these surfactant solutions in the presence of brine water is the primary screening of surfactant stability and foamability for EOR applications in reservoirs type of reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1163 ◽  
Author(s):  
Muhammad Kamal

Selection of surfactants for enhanced oil recovery and other upstream applications is a challenging task. For enhanced oil recovery applications, a surfactant should be thermally stable, compatible with reservoir brine, and have lower adsorption on reservoir rock, have high foamability and foam stability, and should be economically viable. Foam improves the oil recovery by increasing the viscosity of the displacing fluid and by reducing the capillary forces due to a reduction in interfacial tension. In this work, foamability and foam stability of two different surfactants were evaluated using a dynamic foam analyzer. These surfactants were fluorinated zwitterionic, and hydrocarbon zwitterionic surfactants. The effect of various parameters such as surfactant type and structure, temperature, salinity, and type of injected gas was investigated on foamability and foam stability. The foamability was assessed using the volume of foam produced by injecting a constant volume of gas and foam stability was determined by half-life time. The maximum foam generation was obtained using hydrocarbon zwitterionic surfactant. However, the foam generated using fluorinated zwitterionic surfactant was more stable. A mixture of zwitterionic fluorinated and hydrocarbon fluorinated surfactant showed better foam generation and foam stability. The foam generated using CO2 has less stability compared to the foam generated using air injection. Presence of salts increases the foam stability and foam generation. At high temperature, the foamability of the surfactants increased. However, the foam stability was reduced at high temperature for all type of surfactants. This study helps in optimizing the surfactant formulations consisting of a fluorinated and hydrocarbon zwitterionic surfactant for foam injections.


2020 ◽  
Vol 2 (1) ◽  
pp. 50-54
Author(s):  
Asyimah Asri ◽  
Rashidah M. Pilus ◽  
Ahmad Kamal Idris ◽  
Ismail Mohd Saaid ◽  
Zakaria Man ◽  
...  

Foam stability is unfavorably influenced by crude oil and this situation has been a main obstacle for the foam injection application for enhanced oil recovery (EOR) (1, 2). The presence of additives to surfactant solution could improve foam stability (3, 4). In this work, effectiveness of the common ionic liquid (IL) and newly developed eutectic-based IL or known as Deep Eutectic solvent (DES) were determined to evaluate their use as co-surfactant in stabilizing foam in the presence of oil. The novelty of the new chemicals in EOR application is in its capability to enhance the surfactant performance in foam stability while being cheap, biodegradable and easy to produce for bulk application. Several formulation of IL/surfactant mass ratio were investigated based on bulk foam stability test in the presence of oil to find the optimum formulation. A fixed concentration of an in-house-surfactant, MFOMAX (M) was utilized. Core flood experiments were performed to evaluate mobility reduction factor (MRF) and incremental oil recovery. The overall results demonstrated that the addition of ILs in surfactant solution were found to improve foam stability. Increment in MRF value and additional oil recovery (AOR) were also reported.


Sign in / Sign up

Export Citation Format

Share Document