Bi-Ronchi-Test proposal for wavefront sensing and aberration analysis based on the differential form of the Zernike polynomials

2021 ◽  
Author(s):  
Jesus Alonso Alonso Arriaga Hernandez ◽  
Bolivia Cuevas Otahola ◽  
Alberto Jaramillo Núñez ◽  
Jose Jacobo Oliveros Oliveros ◽  
Maria Monserrat Morin Castillo
2013 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Cristina M. Oliveira ◽  
Sandra Franco

With the increasing importance of optical aberrations in both vision research and clinical practice, it becomes necessary for vision scientists to have a thorough understanding of the concepts behind wavefront optics. Therefore, in this review, we provide some basic wave optics concepts useful to understand wavefront analysis, and describe the application of Zernike polynomials in the decomposition of aberrations. A general description of the human eye optical structure is given, followed by a more detailed analysis of the optical components of the eye and optical aberrations, and their secondary effect on overall optical quality. We further provide an overview of the current corneal and ocular wavefront sensing methods.


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shun Qin ◽  
Wai Kin Chan

Accurate segmented mirror wavefront sensing and control is essential for next-generation large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection technique based on model-based phase retrieval with multiple defocused images is proposed for segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear optimization method with the defocus multi-images. Simulation results show that the proposed technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much easier to implement than many existing methods, which usually introduce extra sensors and devices, as it is a technique based on multiple images. These characteristics make it promising for the application of wavefront sensing and control in next-generation large aperture telescopes.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 177
Author(s):  
Iliya Gritsenko ◽  
Michael Kovalev ◽  
George Krasin ◽  
Matvey Konoplyov ◽  
Nikita Stsepuro

Recently the transport-of-intensity equation as a phase imaging method turned out as an effective microscopy method that does not require the use of high-resolution optical systems and a priori information about the object. In this paper we propose a mathematical model that adapts the transport-of-intensity equation for the purpose of wavefront sensing of the given light wave. The analysis of the influence of the longitudinal displacement z and the step between intensity distributions measurements on the error in determining the wavefront radius of curvature of a spherical wave is carried out. The proposed method is compared with the traditional Shack–Hartmann method and the method based on computer-generated Fourier holograms. Numerical simulation showed that the proposed method allows measurement of the wavefront radius of curvature with radius of 40 mm and with accuracy of ~200 μm.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Lingfa Kong ◽  
Yidao Dong ◽  
Wei Liu ◽  
Huaibao Zhang

AbstractAccuracy of unstructured finite volume discretization is greatly influenced by the gradient reconstruction. For the commonly used k-exact reconstruction method, the cell centroid is always chosen as the reference point to formulate the reconstructed function. But in some practical problems, such as the boundary layer, cells in this area are always set with high aspect ratio to improve the local field resolution, and if geometric centroid is still utilized for the spatial discretization, the severe grid skewness cannot be avoided, which is adverse to the numerical performance of unstructured finite volume solver. In previous work [Kong, et al. Chin Phys B 29(10):100203, 2020], we explored a novel global-direction stencil and combined it with the face-area-weighted centroid on unstructured finite volume methods from differential form to realize the skewness reduction and a better reflection of flow anisotropy. Greatly inspired by the differential form, in this research, we demonstrate that it is also feasible to extend this novel method to the unstructured finite volume discretization from integral form on both second and third-order finite volume solver. Numerical examples governed by linear convective, Euler and Laplacian equations are utilized to examine the correctness as well as effectiveness of this extension. Compared with traditional vertex-neighbor and face-neighbor stencils based on the geometric centroid, the grid skewness is almost eliminated and computational accuracy as well as convergence rate is greatly improved by the global-direction stencil with face-area-weighted centroid. As a result, on unstructured finite volume discretization from integral form, the method also has superiorities on both computational accuracy and convergence rate.


Author(s):  
A. B. Bhatia ◽  
E. Wolf

ABSTRACTThe paper is concerned with the construction of polynomials in two variables, which form a complete orthogonal set for the interior of the unit circle and which are ‘invariant in form’ with respect to rotations of axes about the origin of coordinates. It is found that though there exist an infinity of such sets there is only one set which in addition has certain simple properties strictly analogous to that of Legendre polynomials. This set is found to be identical with the set of the circle polynomials of Zernike which play an important part in the theory of phase contrast and in the Nijboer-Zernike diffraction theory of optical aberrations.The results make it possible to derive explicit expressions for the Zernike polynomials in a simple, systematic manner. The method employed may also be used to derive other orthogonal sets. One new set is investigated, and the generating functions for this set and for the Zernike polynomials are also given.


Sign in / Sign up

Export Citation Format

Share Document