QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM SUNRISE

2010 ◽  
Vol 723 (2) ◽  
pp. L154-L158 ◽  
Author(s):  
J. Hirzberger ◽  
A. Feller ◽  
T. L. Riethmüller ◽  
M. Schüssler ◽  
J. M. Borrero ◽  
...  
Keyword(s):  
2020 ◽  
Vol 634 ◽  
pp. A56 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. de la Cruz Rodríguez ◽  
J. Leenaarts ◽  
G. Chintzoglou ◽  
B. De Pontieu ◽  
...  

Context. Numerical simulations of the solar chromosphere predict a diverse thermal structure with both hot and cool regions. Observations of plage regions in particular typically feature broader and brighter chromospheric lines, which suggests that they are formed in hotter and denser conditions than in the quiet Sun, but also implies a nonthermal component whose source is unclear. Aims. We revisit the problem of the stratification of temperature and microturbulence in plage and the quiet Sun, now adding millimeter (mm) continuum observations provided by the Atacama Large Millimiter Array (ALMA) to inversions of near-ultraviolet Interface Region Imaging Spectrograph (IRIS) spectra as a powerful new diagnostic to disentangle the two parameters. We fit cool chromospheric holes and track the fast evolution of compact mm brightenings in the plage region. Methods. We use the STiC nonlocal thermodynamic equilibrium (NLTE) inversion code to simultaneously fit real ultraviolet and mm spectra in order to infer the thermodynamic parameters of the plasma. Results. We confirm the anticipated constraining potential of ALMA in NLTE inversions of the solar chromosphere. We find significant differences between the inversion results of IRIS data alone compared to the results of a combination with the mm data: the IRIS+ALMA inversions have increased contrast and temperature range, and tend to favor lower values of microturbulence (∼3−6 km s−1 in plage compared to ∼4−7 km s−1 from IRIS alone) in the chromosphere. The average brightness temperature of the plage region at 1.25 mm is 8500 K, but the ALMA maps also show much cooler (∼3000 K) and hotter (∼11 000 K) evolving features partially seen in other diagnostics. To explain the former, the inversions require the existence of localized low-temperature regions in the chromosphere where molecules such as CO could form. The hot features could sustain such high temperatures due to non-equilibrium hydrogen ionization effects in a shocked chromosphere – a scenario that is supported by low-frequency shock wave patterns found in the Mg II lines probed by IRIS.


2019 ◽  
Vol 621 ◽  
pp. A78 ◽  
Author(s):  
F. Kahil ◽  
T. L. Riethmüller ◽  
S. K. Solanki

Magnetic elements have an intensity contrast that depends on the type of region they are located in (for example quiet Sun, or active region plage). Observed values also depend on the spatial resolution of the data. Here we investigate the contrast-magnetic field dependence in active region plage observed near disk center with SUNRISE during its second flight in 2013. The wavelengths under study range from the visible at 525 nm to the near ultraviolet (NUV) at 300 nm and 397 nm. We use quasi-simultaneous spectropolarimetric and photometric data from the Imaging Magnetograph eXperiment (IMaX) and the Sunrise Filter Imager (SuFI), respectively. We find that in all wavelength bands, the contrast exhibits a qualitatively similar dependence on the line-of-sight magnetic field, BLOS, as found in the quiet Sun, with the exception of the continuum at 525 nm. There, the contrast of plage magnetic elements peaks for intermediate values of BLOS and decreases at higher field strengths. By comparison, the contrast of magnetic elements in the quiet Sun saturates at its maximum value at large BLOS. We find that the explanation of the turnover in contrast in terms of the effect of finite spatial resolution of the data is incorrect with the evidence provided by the high-spatial resolution SUNRISE data, as the plage magnetic elements are larger than the quiet Sun magnetic elements and are well-resolved. The turnover comes from the fact that the core pixels of these larger magnetic elements are darker than the quiet Sun. We find that plages reach lower contrast than the quiet Sun at disk center at wavelength bands formed deep in the photosphere, such as the visible continuum and the 300 nm band. This difference decreases with formation height and disappears in the Ca II H core, in agreement with empirical models of magnetic element atmospheres.


1979 ◽  
Vol 44 ◽  
pp. 131-134
Author(s):  
A. Raoult ◽  
P. Lantos ◽  
E. Fürst

The depressions at centimetric and millimetric wavelengths associated with the filaments are studied using already published maps as well as unpublished observations from the Effelsberg 100 m radio telescope of the M.P.I., Bonn. The study has been restricted to large Ha quiescent prominences of relatively simple shape, situated far from the limb and from active regions. The data has been reduced employing one method whose main characteristics are choice of a local quiet sun definition and avoidance of the unstable process of deconvolution.


2019 ◽  
Author(s):  
Matteo Campanelli ◽  
Tiziana Del Giacco ◽  
Filippo De Angelis ◽  
Edoardo Mosconi ◽  
Marco Taddei ◽  
...  

<div> <p>A novel solvent-free synthesis for Ce-UiO-66 metal-organic frameworks (MOFs) is presented. The MOFs are obtained by simply grinding the reagents, cerium ammonium nitrate (CAN) and the carboxylic linkers, in a mortar for few minutes with the addition of a small amount of acetic acid (AcOH) as modulator (1.75 eq, o.1 ml). The slurry is then transferred into a 1 ml vial and heated at 120°C for 1 day. The MOFs have been characterized for their composition, crystallinity and porosity and employed as heterogenous catalysts for the photo-oxidation reaction of substituted benzylic alcohols to benzaldaldehydes under near ultraviolet light irradiation. The catalytic performances, such as yield, conversion and kinetics, exceed those of similar systems studied by chemical oxidation and using Ce-MOF as catalyst. Moreover, the MOFs were found to be reusable up to three cycles without loss of activity. Density functional theory (DFT) calculations gave an estimation of the band-gap shift due to the different nature of the linkers used and provide useful information on the catalytic activity experimentally observed.</p> </div>


Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


1999 ◽  
Vol 512 (2) ◽  
pp. 992-1005 ◽  
Author(s):  
N. W. Griffiths ◽  
G. H. Fisher ◽  
D. T. Woods ◽  
O. H. W. Siegmund
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2758
Author(s):  
Alberto Taffelli ◽  
Sandra Dirè ◽  
Alberto Quaranta ◽  
Lucio Pancheri

Photodetectors based on transition metal dichalcogenides (TMDs) have been widely reported in the literature and molybdenum disulfide (MoS2) has been the most extensively explored for photodetection applications. The properties of MoS2, such as direct band gap transition in low dimensional structures, strong light–matter interaction and good carrier mobility, combined with the possibility of fabricating thin MoS2 films, have attracted interest for this material in the field of optoelectronics. In this work, MoS2-based photodetectors are reviewed in terms of their main performance metrics, namely responsivity, detectivity, response time and dark current. Although neat MoS2-based detectors already show remarkable characteristics in the visible spectral range, MoS2 can be advantageously coupled with other materials to further improve the detector performance Nanoparticles (NPs) and quantum dots (QDs) have been exploited in combination with MoS2 to boost the response of the devices in the near ultraviolet (NUV) and infrared (IR) spectral range. Moreover, heterostructures with different materials (e.g., other TMDs, Graphene) can speed up the response of the photodetectors through the creation of built-in electric fields and the faster transport of charge carriers. Finally, in order to enhance the stability of the devices, perovskites have been exploited both as passivation layers and as electron reservoirs.


Sign in / Sign up

Export Citation Format

Share Document