An Infrared Microscope for Use on a Focused Ion Beam for Circuit Edit and Backside Edit Applications

Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.

2002 ◽  
Vol 716 ◽  
Author(s):  
Larry Rice

AbstractMicroscopists are faced with many challenges in locating and examining failure sites in the ever-shrinking semiconductor device. The site must be located using electrical characterization techniques like electron beam induced current (EBIC), photo emission microscopy (PEM) or liquid crystal (LC) and then cross-sectioned with a focused ion beam (FIB). Both PEM and LC require the semiconductor circuit to be running near operating conditions which has been observed to locally melt the area of interest, frequently destroying evidence of the failure mechanism. In contrast, EBIC typically can be accomplished at low or no applied voltage eliminating further damage to the circuit. EBIC has been applied to locate leakage sites in high voltage metal oxide semiconductor (MOS) electro static discharge (ESD) reliability failures. In addition to a brief revisit of the basic principles of EBIC and describing a technique to successfully cross section ‘hot spots’ for transmission electron microscopy (TEM) observation, focus will be placed on a case study of the reliability testing failure analysis of ESD power transistors using EBIC, SEM, focused ion beam (FIB), and XTEM.


1997 ◽  
Vol 480 ◽  
Author(s):  
L. A. Giannuzzi ◽  
J. L. Drown ◽  
S. R. Brown ◽  
R. B. Irwin ◽  
F. A. Stevie

AbstractA site specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. Focused ion beams are used to slice an electron transparent sliver of the specimen from a specific area of interest. Micromanipulation lift-out procedures are then used to transport the electron transparent specimen to a carbon coated copper grid for subsequent TEM analysis. The experimental procedures are described in detail and an example of the lift-out technique is presented.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2182 ◽  
Author(s):  
Chiara Valsecchi ◽  
Luis Enrique Gomez Armas ◽  
Jacson Weber de Menezes

Several fabrication techniques are recently used to produce a nanopattern for sensing, as focused ion beam milling (FIB), e-beam lithography (EBL), nanoimprinting, and soft lithography. Here, interference lithography is explored for the fabrication of large area nanohole arrays in metal films as an efficient, flexible, and scalable production method. The transmission spectra in air of the 1 cm2 substrate were evaluated to study the substrate behavior when hole-size, periodicity, and film thickness are varied, in order to elucidate the best sample for the most effective sensing performance. The efficiency of the nanohole array was tested for bulk sensing and compared with other platforms found in the literature. The sensitivity of ~1000 nm/RIU, achieved with an array periodicity in the visible range, exceeds near infrared (NIR) performances previously reported, and demonstrates that interference lithography is one of the best alternative to other expensive and time-consuming nanofabrication methods.


Author(s):  
Jane Y. Li ◽  
Chuan Zhang ◽  
John Aguada ◽  
Christopher Nemirow ◽  
Howard Marks

Abstract This paper demonstrates a methodology for chip level defect localization that allows complex logic nets to be approached from multiple perspectives during failure analysis of modern flip-chip CMOS IC devices. By combining chip backside deprocessing with site-specific plasma Focused Ion Beam (pFIB) low angle milling, the area of interest in a failure IC device is made accessible from any direction for nanoprobing and Electron Beam Absorbed Current (EBAC) analysis. This methodology allows subtle defects to be more accurately localized and analyzed for thorough root-cause understanding.


Author(s):  
Raymond Lee ◽  
Nicholas Antoniou

Abstract The increasing use of flip-chip packaging is challenging the ability of conventional Focused Ion Beam (FIB) systems to perform even the most basic device modification and debug work. The inability to access the front side of the circuit has severely reduced the usefulness of tradhional micro-surgery. Advancements in FIB technology and its application now allow access to the circuitry from the backside through the bulk silicon. In order to overcome the problem of imaging through thick silicon, a microscope with Infra Red (IR) capability has been integrated into the FIB system. Navigation can now be achieved using the IR microscope in conjunction with CAD. The integration of a laser interferometer stage enables blind navigation and milling with sub-micron accuracy. To optimize the process, some sample preparation is recommended. Thinning the sample to a thickness of about 100 µm to 200 µm is ideal. Once the sample is thinned, it is then dated in the FIB and the area of interest is identified using the IR microscope. A large hole is milled using the FIB to remove most of the silicon covering the area of interest. At this point the application is very similar to more traditional FIB usage since there is a small amount of silicon to be removed in order to expose a node, cut it or reconnect it. The main differences from front-side applications are that the material being milled is conductive silicon (instead of dielectric) and its feature-less and therefore invisible to a scanned ion beam. In this paper we discuss in detail the method of back-side micro-surgery and its eflkcton device performance. Failure Analysis (FA) is another area that has been severely limited by flip-chip packaging. Localized thinning of the bulk silicon using FIB technology oflkrs access to diagnosing fdures in flip-chip assembled parts.


2013 ◽  
Vol 19 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Henrik Pettersson ◽  
Samira Nik ◽  
Jonathan Weidow ◽  
Eva Olsson

AbstractA method that enables high precision extraction of transmission electron microscope (TEM) specimens in low contrast materials has been developed. The main idea behind this work is to produce high contrast markers on both sides of and close to the area of interest. The markers are filled during the depositing of the protective layer. The marker material can be of either Pt or C depending on which one gives the highest contrast. It is thereby possible to distinguish the location of the area of interest during focused ion beam (FIB) milling and ensure that the TEM sample is extracted precisely at the desired position. This method is generally applicable and enables FIB/scanning electron microscope users to make high quality TEM specimens from small features and low contrast materials without a need for special holders. We explain the details of this method and illustrate its potential by examples from three different types of materials.


2000 ◽  
Vol 6 (S2) ◽  
pp. 528-529
Author(s):  
C. Urbanik Shannon ◽  
L. A. Giannuzzi ◽  
E. M. Raz

Automated specimen preparation for transmission electron microscopy has the obvious advantage of saving personnel time. While some people may perform labor intensive specimen preparation techniques quickly, automated specimen preparation performed in a timely and reproducible fashion can significantly improve the throughput of specimens in an industrial laboratory. The advent of focused ion beam workstations for the preparation of electron transparent membranes has revolutionized TEM specimen preparation. The FIB lift-out technique is a powerful specimen preparation method. However, there are instances where the “traditional” FIB method of specimen preparation may be more suitable. The traditional FIB method requires that specimens must be prepared so that the area of interest is as thin as possible (preferably less than 50 μm) prior to FIB milling. Automating the initial specimen preparation for brittle materials (e.g., Si wafers) may be performed using the combination of cleaving and sawing techniques as described below.


2006 ◽  
Vol 05 (06) ◽  
pp. 743-746
Author(s):  
SHOUZHEN HAN ◽  
JIE TIAN ◽  
CHENG REN ◽  
XINGSHENG XU ◽  
ZHIYUAN LE ◽  
...  

The abstract should summarize the context, content and conclusions of the paper in less than 200 words. We fabricated a two-dimensional Y-branch photonic crystal waveguide in the near infrared region by using focused ion beam etching and depositing system. The light guide characters of the waveguide were measured for three different spaces between branches. Field intensity distributions of TE polarized wave in the branches were simulated by using the transfer matrix method. Both the theoretical and experimental results show that the shortest space between branches of the photonic crystal waveguide is about 1.4 times wavelength of transmitted light. If the space became shorter, the light in the two branches would couple to each other seriously. This result might be helpful for the design of compact wave demultiplexer and all-optical integrated circuits.


2005 ◽  
Vol 17 (21) ◽  
pp. 2547-2549 ◽  
Author(s):  
C. Enkrich ◽  
F. Pérez-Willard ◽  
D. Gerthsen ◽  
J. F. Zhou ◽  
T. Koschny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document