scholarly journals WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF YOUNG STELLAR OBJECTS IN THE WESTERN CIRCINUS MOLECULAR CLOUD

2011 ◽  
Vol 733 (1) ◽  
pp. L2 ◽  
Author(s):  
Wilson M. Liu ◽  
Deborah L. Padgett ◽  
David Leisawitz ◽  
Sergio Fajardo-Acosta ◽  
Xavier P. Koenig
Author(s):  
W. J. Fischer ◽  
D. L. Padgett ◽  
K. R. Stapelfeldt

AbstractThe photometric data returned by WISE, the Wide-field Infrared Survey Explorer, can be used to search the sky for young stellar objects (YSOs) away from the molecular clouds studied in detail by Spitzer and Herschel. We present updated results for a 100 deg2 region centered on Canis Major, including a look at the clustering properties of YSOs in the region.


2019 ◽  
Vol 489 (4) ◽  
pp. 4809-4816 ◽  
Author(s):  
Brandon Marshall ◽  
C R Kerton

ABSTRACT We present a study of a small atomic/molecular cometary cloud associated with the infrared source IRAS 23153+6938. The cloud is located 70 pc from the massive O-type stars in the Cepheus OB3 association, and is very likely an excellent example of triggered star formation via radiation-driven implosion (RDI). The cloud was studied using $\rm{H\,\small{I}}$ and 12CO data from the Canadian Galactic Plane Survey (CGPS) and infrared observations from the Wide-field Infrared Survey Explorer (WISE) telescope. The molecular mass is approximately MH2 = 350 ± 45 M$\odot$, and we find that the single IRAS source is actually the centre of a small cluster of class I and class II young stellar objects (YSOs). To compare with theory, we make reasonable estimates for the cometary cloud’s initial conditions and find that the cloud is located within the correct theoretical phase space for RDI to occur. In addition, both the morphology of the cloud and the location of different YSO classes relative to the cloud match what would be expected for RDI. We conclude that RDI is the most likely explanation for star formation within the cloud, and we suggest that similar studies of molecular clouds associated with nearby OB associations may be able to identify comparable examples.


2014 ◽  
Vol 147 (6) ◽  
pp. 133 ◽  
Author(s):  
Wilson M. Liu ◽  
Deborah L. Padgett ◽  
Susan Terebey ◽  
John Angione ◽  
Luisa M. Rebull ◽  
...  

2015 ◽  
Vol 10 (S314) ◽  
pp. 63-64
Author(s):  
W. J. Fischer ◽  
D. L. Padgett ◽  
K. R. Stapelfeldt

AbstractWhile searches for young stellar objects (YSOs) with the Spitzer Space Telescope focused on known molecular clouds, photometry from the Wide-field Infrared Survey Explorer (WISE) can be used to extend the search to the entire sky. As a precursor to more expansive searches, we present results for a 100 deg2 region centered on the Canis Major clouds.


2020 ◽  
Vol 495 (4) ◽  
pp. 3614-3635 ◽  
Author(s):  
Carlos Contreras Peña ◽  
Doug Johnstone ◽  
Giseon Baek ◽  
Gregory J Herczeg ◽  
Steve Mairs ◽  
...  

ABSTRACT We study the relationship between the mid-infrared (mid-IR) and sub-millimetre (sub-mm) variability of deeply embedded protostars using the multi-epoch data from the Wide-field Infrared Survey Explorer (WISE/NEOWISE) and the ongoing James Clerk Maxwell Telescope (JCMT) Transient Survey. Our search for signs of stochastic (random) and/or secular (roughly monotonic in time) variability in a sample of 59 young stellar objects (YSOs) revealed that 35 are variable in at least one of the two surveys. This variability is dominated by secular changes. Of those objects with secular variability, 14 objects ($22{{\ \rm per\ cent}}$ of the sample) show correlated secular variability over mid-IR and sub-mm wavelengths. Variable accretion is the likely mechanism responsible for this type of variability. Fluxes of YSOs that vary in both wavelengths follow a relation of log10F4.6(t) = ηlog10F850(t) between the mid-IR and sub-mm, with η = 5.53 ± 0.29. This relationship arises from the fact that sub-mm fluxes respond to the dust temperature in the larger envelope whereas the mid-IR emissivity is more directly proportional to the accretion luminosity. The exact scaling relation, however, depends on the structure of the envelope, the importance of viscous heating in the disc, and dust opacity laws.


2018 ◽  
Vol 234 (2) ◽  
pp. 42 ◽  
Author(s):  
Jungmi Kwon ◽  
Takao Nakagawa ◽  
Motohide Tamura ◽  
James H. Hough ◽  
Minho Choi ◽  
...  

2019 ◽  
Vol 487 (2) ◽  
pp. 2522-2537 ◽  
Author(s):  
G Marton ◽  
P Ábrahám ◽  
E Szegedi-Elek ◽  
J Varga ◽  
M Kun ◽  
...  

ABSTRACT The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 data base with Wide-field Infrared Survey Explorer (WISE) and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars, and evolved stars. At a 90 per cent probability threshold, we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star-forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disc. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30 per cent more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.


2018 ◽  
Vol 617 ◽  
pp. A67 ◽  
Author(s):  
M. R. Samal ◽  
L. Deharveng ◽  
A. Zavagno ◽  
L. D. Anderson ◽  
S. Molinari ◽  
...  

Aims. We aim to identify bipolar Galactic H II regions and to understand their parental cloud structures, morphologies, evolution, and impact on the formation of new generations of stars. Methods. We use the Spitzer-GLIMPSE, Spitzer-MIPSGAL, and Herschel-Hi-GAL surveys to identify bipolar H II regions and to examine their morphologies. We search for their exciting star(s) using NIR data from the 2MASS, UKIDSS, and VISTA surveys. Massive molecular clumps are detected near these bipolar nebulae, and we estimate their temperatures, column densities, masses, and densities. We locate Class 0/I young stellar objects (YSOs) in their vicinities using the Spitzer and Herschel-PACS emission. Results. Numerical simulations suggest bipolar H II regions form and evolve in a two-dimensional flat- or sheet-like molecular cloud. We identified 16 bipolar nebulae in a zone of the Galactic plane between ℓ ± 60° and |b| < 1°. This small number, when compared with the 1377 bubble H II regions in the same area, suggests that most H II regions form and evolve in a three-dimensional medium. We present the catalogue of the 16 bipolar nebulae and a detailed investigation for six of these. Our results suggest that these regions formed in dense and flat structures that contain filaments. We find that bipolar H II regions have massive clumps in their surroundings. The most compact and massive clumps are always located at the waist of the bipolar nebula, adjacent to the ionised gas. These massive clumps are dense, with a mean density in the range of 105 cm−3 to several 106 cm−3 in their centres. Luminous Class 0/I sources of several thousand solar luminosities, many of which have associated maser emission, are embedded inside these clumps. We suggest that most, if not all, massive 0/I YSO formation has probably been triggered by the expansion of the central bipolar nebula, but the processes involved are still unknown. Modelling of such nebula is needed to understand the star formation processes at play.


2014 ◽  
Vol 9 (S310) ◽  
pp. 223-224
Author(s):  
Olga P. Stoyanovskaya ◽  
Valeriy N. Snytnikov

AbstractThe formation of planetesimals and large bodies in circumstellar discs can be referred to the stage of massive unstable disc emerging due to the gravitational collapse in the molecular cloud. We have simulated the dynamics of gas and boulder clumps in such systems. The features of instability development in massive disc is discussed. Unlike medium-massive discs the massive disc can provide conditions for simultaneous formation of several clumps as a result of overdensity ring fragmentation. We found regimes where 3, 2 or 1 overdensity ring appear in the disc and then fragment into clumps collecting about a half of the disc mass.


2006 ◽  
Vol 2 (S237) ◽  
pp. 217-221
Author(s):  
Miriam Rengel ◽  
Klaus Hodapp ◽  
Jochen Eislöffel

AbstractAccording to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.


Sign in / Sign up

Export Citation Format

Share Document