scholarly journals WIDE-FIELD INFRARED SURVEY EXPLOREROBSERVATIONS OF YOUNG STELLAR OBJECTS IN THE LYNDS 1509 DARK CLOUD IN AURIGA

2014 ◽  
Vol 147 (6) ◽  
pp. 133 ◽  
Author(s):  
Wilson M. Liu ◽  
Deborah L. Padgett ◽  
Susan Terebey ◽  
John Angione ◽  
Luisa M. Rebull ◽  
...  
Author(s):  
W. J. Fischer ◽  
D. L. Padgett ◽  
K. R. Stapelfeldt

AbstractThe photometric data returned by WISE, the Wide-field Infrared Survey Explorer, can be used to search the sky for young stellar objects (YSOs) away from the molecular clouds studied in detail by Spitzer and Herschel. We present updated results for a 100 deg2 region centered on Canis Major, including a look at the clustering properties of YSOs in the region.


2019 ◽  
Vol 489 (4) ◽  
pp. 4809-4816 ◽  
Author(s):  
Brandon Marshall ◽  
C R Kerton

ABSTRACT We present a study of a small atomic/molecular cometary cloud associated with the infrared source IRAS 23153+6938. The cloud is located 70 pc from the massive O-type stars in the Cepheus OB3 association, and is very likely an excellent example of triggered star formation via radiation-driven implosion (RDI). The cloud was studied using $\rm{H\,\small{I}}$ and 12CO data from the Canadian Galactic Plane Survey (CGPS) and infrared observations from the Wide-field Infrared Survey Explorer (WISE) telescope. The molecular mass is approximately MH2 = 350 ± 45 M$\odot$, and we find that the single IRAS source is actually the centre of a small cluster of class I and class II young stellar objects (YSOs). To compare with theory, we make reasonable estimates for the cometary cloud’s initial conditions and find that the cloud is located within the correct theoretical phase space for RDI to occur. In addition, both the morphology of the cloud and the location of different YSO classes relative to the cloud match what would be expected for RDI. We conclude that RDI is the most likely explanation for star formation within the cloud, and we suggest that similar studies of molecular clouds associated with nearby OB associations may be able to identify comparable examples.


2020 ◽  
Vol 498 (4) ◽  
pp. 5109-5115
Author(s):  
T Yu Magakian ◽  
T A Movsessian ◽  
H R Andreasyan ◽  
J Bally ◽  
A S Rastorguev

ABSTRACT Looking for evidence of recent star formation, we have studied a small comet-shaped reflection nebula, known as BBWo 192E (GM 1–23), which is located in the dark cloud SL 4 in the Vela Molecular Ridge cloud C, and a young infrared cluster embedded into the nebula. We obtained the images of BBWo 192E in Hα and [S ii] lines and in a Sloan Digital Sky Survey i ′ filter with the Blanco telescope at the Cerro Tololo Inter-American Observatory in order to discover new Herbig–Haro (HH) flows. We used the Two-Micron All-Sky Survey and the Wide-field Infrared Survey Explorer to search for additional member stars of the cluster. We also studied the proper motions and parallaxes of the cluster members using GAIA Data Release 2. Five new groups containing at least nine HH objects, tracing several distinct outflows, were revealed. A previously unreported reflection nebula and a number of probable outflow sources were found in the infrared range. The proper motions allowed us to select eight probable member stars in the visual range. Their parallaxes correspond to a mean distance 800 ± 100 pc for this cluster. The bolometric luminosities of the brightest cluster members are 1010 L⊙ (IRAS 08513−4201, the strong source in the centre of the cluster) and 2–6 L⊙ for the five other stars. The existence of optical HH flows around the infrared cluster of young stellar objects suggests that star formation in this cloud is ongoing around the more massive Herbig Ae/Be star. Considering its morphology and other features, this star-forming region is similar to the zone of star formation near CPM 19.


2011 ◽  
Vol 733 (1) ◽  
pp. L2 ◽  
Author(s):  
Wilson M. Liu ◽  
Deborah L. Padgett ◽  
David Leisawitz ◽  
Sergio Fajardo-Acosta ◽  
Xavier P. Koenig

2015 ◽  
Vol 10 (S314) ◽  
pp. 63-64
Author(s):  
W. J. Fischer ◽  
D. L. Padgett ◽  
K. R. Stapelfeldt

AbstractWhile searches for young stellar objects (YSOs) with the Spitzer Space Telescope focused on known molecular clouds, photometry from the Wide-field Infrared Survey Explorer (WISE) can be used to extend the search to the entire sky. As a precursor to more expansive searches, we present results for a 100 deg2 region centered on the Canis Major clouds.


2020 ◽  
Vol 495 (4) ◽  
pp. 3614-3635 ◽  
Author(s):  
Carlos Contreras Peña ◽  
Doug Johnstone ◽  
Giseon Baek ◽  
Gregory J Herczeg ◽  
Steve Mairs ◽  
...  

ABSTRACT We study the relationship between the mid-infrared (mid-IR) and sub-millimetre (sub-mm) variability of deeply embedded protostars using the multi-epoch data from the Wide-field Infrared Survey Explorer (WISE/NEOWISE) and the ongoing James Clerk Maxwell Telescope (JCMT) Transient Survey. Our search for signs of stochastic (random) and/or secular (roughly monotonic in time) variability in a sample of 59 young stellar objects (YSOs) revealed that 35 are variable in at least one of the two surveys. This variability is dominated by secular changes. Of those objects with secular variability, 14 objects ($22{{\ \rm per\ cent}}$ of the sample) show correlated secular variability over mid-IR and sub-mm wavelengths. Variable accretion is the likely mechanism responsible for this type of variability. Fluxes of YSOs that vary in both wavelengths follow a relation of log10F4.6(t) = ηlog10F850(t) between the mid-IR and sub-mm, with η = 5.53 ± 0.29. This relationship arises from the fact that sub-mm fluxes respond to the dust temperature in the larger envelope whereas the mid-IR emissivity is more directly proportional to the accretion luminosity. The exact scaling relation, however, depends on the structure of the envelope, the importance of viscous heating in the disc, and dust opacity laws.


2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2019 ◽  
Vol 487 (2) ◽  
pp. 2522-2537 ◽  
Author(s):  
G Marton ◽  
P Ábrahám ◽  
E Szegedi-Elek ◽  
J Varga ◽  
M Kun ◽  
...  

ABSTRACT The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 data base with Wide-field Infrared Survey Explorer (WISE) and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars, and evolved stars. At a 90 per cent probability threshold, we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star-forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disc. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30 per cent more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.


2016 ◽  
Vol 151 (2) ◽  
pp. 42 ◽  
Author(s):  
Nicholas S. Kern ◽  
Jared A. Keown ◽  
John J. Tobin ◽  
Adrian Mead ◽  
Robert A. Gutermuth

2019 ◽  
Vol 487 (2) ◽  
pp. 1517-1528 ◽  
Author(s):  
Xu Li ◽  
Jarken Esimbek ◽  
Jianjun Zhou ◽  
W A Baan ◽  
Weiguang Ji ◽  
...  

Abstract A multi-wavelength analysis of the large Galactic infrared bubble N 24 is presented in this paper in order to investigate the molecular and star-formation environment around expanding H ii regions. Using archival data from Herschel and ATLASGAL, the distribution and physical properties of the dust over the entire bubble are studied. Using the Clumpfind2d algorithm, 23 dense clumps are identified, with sizes and masses in the range 0.65–1.73 pc and 600–16 300 M⊙, respectively. To analyse the molecular environment in N 24, observations of NH3 (1,1) and (2,2) were carried out using the Nanshan 26-m radio telescope. Analysis of the kinetic temperature and gravitational stability of these clumps suggests gravitational collapse in several of them. The mass–size distributions of the clumps and the presence of massive young protostars indicate that the shell of N 24 is a region of ongoing massive-star formation. The compatibility of the dynamical and fragmentation timescales and the overabundance of young stellar objects and clumps on the rim suggest that the ‘collect-and-collapse’ mechanism is in play at the boundary of the bubble, but the existence of the infrared dark cloud at the edge of bubble indicates that a ‘radiation-driven implosion’ mechanism may also have played a role there.


Sign in / Sign up

Export Citation Format

Share Document