Ultrasonic assisted turning of AISI 52100 steel using nanoparticle-MQL method

2021 ◽  
Vol 9 (1) ◽  
pp. 015024
Author(s):  
Salih Ağar ◽  
Nihat Tosun
Alloy Digest ◽  
1974 ◽  
Vol 23 (11) ◽  

Abstract VASCO M-50 is a hardenable (martensitic), low-alloy high-speed steel developed primarily for high-strength, high-load components (such as bearings and gears) designed for elevated-temperature service. It may be used at temperatures up to 600 F; this is in contrast to AISI 52100 steel which may be used up to only 350 F. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-278. Producer or source: Teledyne Vasco.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 668
Author(s):  
Gustavo Pinto ◽  
Andresa Baptista ◽  
Francisco Silva ◽  
Jacobo Porteiro ◽  
José Míguez ◽  
...  

Micro-abrasion remains a test configuration hugely used, mainly for thin coatings. Several studies have been carried out investigating the parameters around this configuration. Recently, a new study was launched studying the behavior of different ball materials in abrasive particles’ dynamics in the contact area. This study intends to extend that study, investigating new ball materials never used so far in this test configuration. Thus, commercial balls of American Iron and Steel Institute (AISI) 52100 steel, Stainless Steel (SS) (AISI) 304 steel and Polytetrafluoroethylene (PTFE) were used under different test conditions and abrasive particles, using always the same coating for reference. Craters generated on the coated samples’ surface and tracks on the balls’ surface were carefully observed by Scanning Electron Microscopy (SEM) and 3D microscopy in order to understand the abrasive particles’ dynamics. As a softer material, more abrasive particles were entrapped on the PTFE ball’s surface, generating grooving wear on the samples. SS AISI 304 balls, being softer than the abrasive particles (diamond), also allowed particle entrapment, originating from grooving wear. AISI 52100 steel balls presented particle dynamics that are already known. Thus, this study extends the knowledge already existing, allowing to better select the ball material to be used in ball-cratering tests.


2021 ◽  
Vol 13 (3) ◽  
pp. 205-214
Author(s):  
P. U MAMAHESWARRAO ◽  
D. RANGARAJU ◽  
K. N. S. SUMAN ◽  
B. RAVISANKAR

In this article, a recently developed method called surface defect machining (SDM) for hard turning has been adopted and termed surface defect hard turning (SDHT). The main purpose of the present study was to explore the impact of cutting parameters like cutting speed, feed, depth of cut, and tool geometry parameters such as nose radius and negative rake angle of the machining force during surface defect hard turning (SDHT) of AISI 52100 steel in dry condition with Polycrystalline cubic boron nitride (PCBN) tool; and results were compared with conventional hard turning (CHT). Experimentation is devised and executed as per Central Composite Design (CCD) of Response Surface Methodology (RSM). Results reported that an average machining force was decreased by 22% for surface defect hard turning (SDHT) compared to conventional hard turning (CHT).


1999 ◽  
Author(s):  
Jeffrey D. Thiele ◽  
Shreyes N. Melkote ◽  
Roberta A. Peascoe ◽  
Thomas R. Watkins

Abstract An experimental investigation was conducted to determine the effects of tool cutting-edge geometry and workpiece hardness on surface residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with representative types of edge geometry including “up-sharp” edges, edge hones, and chamfers, were used as the cutting tools in this study. This study shows that tool edge geometry is highly influential with respect to surface residual stresses, which were measured using x-ray diffraction. In general, compressive surface residual stresses in the axial and circumferential directions were generated by large edge hone tools, for longitudinal turning operations. Residual stresses in the axial and circumferential directions generated by small edge hone tools are typically more tensile than stresses produced by large edge hone tools. Microstructural analysis shows that thermal effects are significant at high feed rates, based on the presence of phase changes on the workpiece surface. At high feed rates, compressive stresses correlate with continuous white layers and tensile stresses correlate with over-tempered regions on the surface of the workpiece. Mechanical effects play a larger role at low feed rates, where phase changes are not observed to a significant degree. For these cases, large edge hone tools generally produce more compressive values of residual stress than small edge hone tools.


Sign in / Sign up

Export Citation Format

Share Document