Influence Of Al203 Particle Mixed Dielectric Fluid on Machining Performance of Ti6Al4V

Author(s):  
Ranjith R ◽  
Manoj Prabhakar ◽  
Giridharan Pytenkar ◽  
M Ramu

Abstract In this research work, an attempt was made to machine Ti6Al4V titanium alloy utilizing AA6061/10Gr composite tool. The composite tool was fabricated using stir casting technique and Al2O3 particles of size 5µm were incorporated in the dielectric fluid to enhance the machining performance. Experiments were conducted by varying Al203 concentration, pulse on time, current, and pulse off time, and the responses Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (Ra) were recorded. Experiments runs were planned using Taguchi orthogonal array. The results revealed that adding powder increases MRR and TWR owing to the excessive heat generation and bridging effect respectively. The best surface finish was attained due to the increase in spark gap and complete flushing of machined debris. Coating of materials over the machined specimen was observed when the parametric value of Ton was higher than 60s under PMEDM conditions. Pits, craters and cracks were observed on the machined topography which was eliminated when 5g/l of Al2O3 particles were added to dielectric fluid. MEIOT technique was utilized for optimization and it was observed that Ton 15µs, Toff 4µs and current 7A and powder concentration of 10g/l results in best machining performance.

2019 ◽  
Vol 969 ◽  
pp. 715-719
Author(s):  
G. Gowtham Reddy ◽  
Balasubramaniyan Singaravel ◽  
K. Chandra Shekar

Electric Discharge Machining (EDM) is used to machine complex geometries of difficult to cut materials in the area of making dies, mould and tools. Currently, hydrocarbon based dielectric fluids are used in EDM and which plays major role for material removal and it emits harmful emission. In this work, vegetable oil is attempted as dielectric fluid and their performance are studied during processing of AISI P20 steel. The effect of pulse on time (Pon) , pulse off time (Poff), and current (A) on Material Removal Rate (MRR), Tool wear rate (TWR) and surface roughness (SR) are analyzed. The result showed that vegetable oils are given good machining performance than conventional dielectric fluids. These proposed dielectric fluids are biodegradable eco friendly and enhance sustainability in EDM process.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 714 ◽  
Author(s):  
SK Khadar Basha ◽  
Murahari Kolli ◽  
M V.Jagannadha Raju

Due to development in machining science the use of composites and alloys is a great deal for every industry. Hastelloy C276 the most versatile corrosion resistant nickel based super alloy which is used for industrial applications is considered for doing the            experiments .The high nickel and molybdenum content provides better corrosion resistance at extreme environments. In this report, the experiments are performed by using Taguchi L18 technique and their results are used for performance of each process parameters on their output responses. The process parameters considered for experimentation are discharge current, pulse- on- time, type of electrode and pulse off time for the output responses of material removal rate and surface roughness. Eco-friendly (drinking water) is used as a dielectric fluid. The experiments are designed and conducted using Taguchi L18 technique and analyze the influence of each process parameters on machining performance characteristics. Further, mathematical equations were developed using the statistical software MINITAB17.0.ANOVA is used for analyzing the experimental results obtained. It was observed from the response table that the average values of MRR and SR for pulse on time, discharge current, electrode are identified as important process parameters.  


2021 ◽  
Vol 71 (1) ◽  
pp. 1-18
Author(s):  
Basha Shaik Khadar ◽  
Raju M. V. Jagannadha ◽  
Kolli Murahari

Abstract The paper investigates the influence of boron carbide powder (B4C) mixed in dielectric fluid on EDM of Inconel X-750 alloy. The process parameters selected as discharge current (Ip), pulse on time(Ton), pulse off time(Toff), boron carbide(B4C) powder concentration to examine their performance responses on Material Removal Rate (MRR), Surface Roughness(Ra) and Recast Layer Thickness (RLT).In this study, o examine the process parameters which influence the EDM process during machining of Inconel X-750 alloy using combined techniques of Taguchi and similarity to ideal solutions (TOPSIS).Analysis of variance (ANOVA) was conducted on multi-optimization technique of Taguchi-TOPSIS. ANOVA results identified the best process parameters and their percentages. It developed the mathematical equation on Taguchi-TOPSIS performance characteristics results. The multi optimization results indicated that Ip and Toff are more significant parameters; V, and Ton parameters are less significant. Finally, surface structures were studied at optimized EDM conditions by using scanning electron microscope (SEM).


Author(s):  
Goutam Kumar Bose ◽  
Pritam Pain

In the present research work four different work materials viz. EN24, D2, H13, P20 which are commonly use in plastic industries are considered for machining applying EDM process. Four different control parameters such as pulse on time, pulse off time, gap current, and Spark gap are considered to study the effect on the performance of responses like material removal rate, surface roughness and overcut using a square shape copper tool with lateral flushing. A well design experimental plan is used to reduce the total number of experiment following L9 orthogonal array. Based on Taguchi methodology the significant process parameters affecting the responses are identified applying ANOVA for each material. The effect of the responses with respect to the four control parameters for the four different work materials is compared through linear graphs. A well-known Grey relational analysis is carried out where the weights are calculated using entropy method to full fill the multi criteria decision making process.


2016 ◽  
Vol 15 (04) ◽  
pp. 189-207 ◽  
Author(s):  
K. Ravi Kumar ◽  
V. S. Sreebalaji

In the present study, aluminum alloy (Al/3.25Cu/8.5Si) composites reinforced with fly ash particles was fabricated using stir casting technique. Fly ash particles of three different size ranges 53–75, 75–103 and 103–125[Formula: see text][Formula: see text]m of 3, 6 and 9 weight percentages was reinforced in aluminum alloy. The effect of peak current, pulse on time, and pulse off time on surface roughness (SR), material removal rate (MRR) and tool wear rate (TWR) of electric discharge machining (EDM) was investigated. A central composite design using response surface methodology (RSM) was selected for conducting experiments, and mathematical models were developed using Design Expert V7.0.0 software. Analysis of variance (ANOVA) technique was used to check the significance of the models developed. Peak current was the major factor influencing the EDM of aluminum fly ash composites. The MRR, TWR, and SR of aluminum fly ash composites were also influenced by the size of the fly ash particles.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


2016 ◽  
Vol 852 ◽  
pp. 212-217 ◽  
Author(s):  
S.K. Dinesh Kumar ◽  
R. Selvanayagam ◽  
M. Sivakumar ◽  
S. Krishnaraj

Wire electrical discharge machine (WEDM) is extensively used in machining of conductive material where precision is of prime importance. Machining operation in WEDM is treated as a challenging one because improvement of more than one Machining performance characteristics are sought to obtain precision work. This project illustrates the implementation of Taguchi technique to select the best optimal machining parameters of WEDM process using Copper powders. In general the machining parameters namely metal removal rate and the surface roughness are determined in WEDM process. The machining material chosen for the experiment is HCHCr alloy steel. Experiments were conducted as per Taguchi’s L18 orthogonal array under different cutting conditions of pulse on-time, pulse off-time, current and frequency and the results are compared. The level of significance of the machining parameters on the output characteristics is identified by Analysis of Variance. Finally this research concludes that the copper powder suspended demineralized water when used as dielectric gives higher MRR and lower Ra. Taguchi optimization is carried out to find the best combination of machining parameters to obtain the desired result


Author(s):  
P Srinivasa Rao and Prof. Eshwara Prasad Koorapati

This work focuses on the use of the Taguchi method in order to find out the optimized parameters of the process like discharge current, pulse on time and pulse off time on the machining features such as material removal rate(MRR), surface roughness(SR) & tool wear rate(TWR) on Stavax Steel by means of Electrical Discharge Machining(EDM). It is also intended to study the individual influence of parameters on the performance characteristics. The dielectric fluid circulating system is modified to conduct the experiments. The analysis of variance (ANOVA) is made to recognise the importance of parameters on the response. By using non-linear regression analysis the empirical models are developed in order to predict these performance characteristics and the confirmation test was conducted at the optimal parameters settings to check the optimum expected values of performance features. Detailed analysis by using ANOVA is done and came out with the findings as a pulse on time is the most significant process parameter, next is the discharge current and the insignificant parameter is the pulse off time. Machining surface morphology was studied and observed that crater size is large and deeper due to a large amount of metal is melted and vaporized at the optimum condition of MRR.


2015 ◽  
Vol 813-814 ◽  
pp. 304-308
Author(s):  
Nipun Gosai ◽  
Anand Joshi

Ti–6Al–4V is widely used in the aerospace, automobile, and biomedical fields, but is a difficult to machine material. Electrical discharge machining (EDM) is regarded as one of the most effective approaches to machining Ti–6Al–4V alloy, since it is a noncontact electro-thermal machining method, and it is independent from the mechanical properties of the processed material. In electro discharge machining (EDM), dielectric plays an important role during machining operation. The machining characteristics are greatly influenced by the nature of dielectric used during EDM machining. In present paper silicon powder suspended kerosene as dielectric is used to explore the influence of these dielectrics on the performance criteria such as material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) during machining of titanium alloy (Ti-6Al-4V). Peak current, pulse on time, pulse off time and concentration of powders added into dielectric fluid of EDM were chosen as process parameters to study the PMEDM performance in terms of MRR, TWR and Ra. The experiments were carried out in planning mode on a specially designed experimental set up developed in laboratory. Response surface methodology, employing a face-centered central composite design scheme has been used to plan and analyze the experiments.


Author(s):  
Mahesh Muley

Abstract: The manufacturing industry is changing very drastically in all the aspect regarding the manufacturing technology as well as the quality concern as per as the quality is considered. Quality is becoming a significant trend in todays growing automobile industry. In the field of metal cutting operations, the surface roughness is becoming more dominant parameter as per as the quality of the component is considered. Electrical discharge machining is becoming a most powerful non conventional machining which is being widely used in the field of machining. Most specifically our work was conducted on the electrical discharge wire cut machining for achieving the desired surface roughness (Ra) and adequate material removal rate (MRR). The input parameter for our research work were selected as Peak current, pulse on time & pulse off time while the output parameter was selected as MRR and the surface roughness. Aluminum 6082 Grade material is used as a specimen and the research methodology implemented for the research work is taguchi and Anova. Keywords: Wire cut EDM, Taguchi, MRR surface roughness, Anova.


Sign in / Sign up

Export Citation Format

Share Document