scholarly journals Pt-Sb2Te as high speed phase-change materials with excellent thermal stability

Author(s):  
Zhihao Song ◽  
Guo Junmei ◽  
Jialin Chen ◽  
Ming Wen ◽  
Zhilong Tan ◽  
...  
2019 ◽  
Vol 247 ◽  
pp. 60-62 ◽  
Author(s):  
Tao Li ◽  
Liangcai Wu ◽  
Yong Wang ◽  
Guangyu Liu ◽  
Tianqi Guo ◽  
...  

2018 ◽  
Vol 29 (50) ◽  
pp. 505710 ◽  
Author(s):  
Tianqi Guo ◽  
Sannian Song ◽  
Yonghui Zheng ◽  
Yuan Xue ◽  
Shuai Yan ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nishant Saxena ◽  
Christoph Persch ◽  
Matthias Wuttig ◽  
Anbarasu Manivannan

AbstractPhase change memory (PCM) offers remarkable features such as high-speed and non-volatility for universal memory. Yet, simultaneously achieving better thermal stability and fast switching remains a key challenge. Thus, exploring novel materials with improved characteristics is of utmost importance. We report here, a unique property-portfolio of high thermal stability and picosecond threshold switching characteristics in In3SbTe2 (IST) PCM devices. Our experimental findings reveal an improved thermal stability of amorphous IST compared to most other phase change materials. Furthermore, voltage dependent threshold switching and current-voltage characteristics corroborate an extremely fast, yet low electric field threshold switching operation within an exceptionally small delay time of less than 50 picoseconds. The combination of low electric field and high speed switching with improved thermal stability of IST makes the material attractive for next-generation high-speed, non-volatile memory applications.


2021 ◽  
Vol 863 ◽  
pp. 158583
Author(s):  
Junshi Zhao ◽  
Qi Liang ◽  
Ying Chen ◽  
Sifan Zhang ◽  
Zhitang Song ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 894 ◽  
Author(s):  
Yafang Zhang ◽  
Wang Li ◽  
Juhua Huang ◽  
Ming Cao ◽  
Guoping Du

In this work, expanded graphite/paraffin/silicone rubber composite phase-change materials (PCMs) were prepared by blending the expanded graphite (EG), paraffin wax (PW) and silicone rubber (SR) matrix. It has been shown that PW fully penetrates into the three dimensional (3D) pores of EG to form the EG/PW particles, which are sealed by SR and evenly embedded in the SR matrix. As a result of the excellent thermal stability of SR and the capillary force from the 3D pores of EG, the EG/PW/SR PCMs are found to have good shape stability and high reliability. After being baked in an oven at 150 °C for 24 h, the shape of the EG/PW/SR PCMs is virtually unchanged, and their weight loss and latent heat drop are only 7.91 wt % and 11.3 J/g, respectively. The latent heat of the EG/PW/SR composites can reach up to 43.6 and 41.8 J/g for the melting and crystallizing processes, respectively. The super cooling of PW decreased from 4.2 to 2.4 due to the heterogeneous nucleation on the large surface of EG and the sealing effect of the SR. Meanwhile, the thermal conductivity of the EG/PW/SR PCMs reaches 0.56 W·m−1·K−1, which is about 2.8 times and 3.73 times of pure PW and pristine SR, respectively. The novel EG/PW/SR PCMs with superior shape and thermal stabilities will have a potential application in heat energy storage and thermal interface materials (TIM) for electronic devices.


2016 ◽  
Vol 108 (22) ◽  
pp. 223103 ◽  
Author(s):  
Yifeng Hu ◽  
Xiaoqin Zhu ◽  
Hua Zou ◽  
Jianhao Zhang ◽  
Li Yuan ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1627 ◽  
Author(s):  
Samer Kahwaji ◽  
Mary Anne White

Edible oils could provide more accessible alternatives to other phase change materials (PCMs) for consumers who wish to build a thermal energy storage (TES) system with sustainable materials. Edible oils have good shelf life, can be acquired easily from local stores and can be less expensive than other PCMs. In this work, we explore whether margarine, vegetable shortening, and coconut oil are feasible PCMs, by investigations of their thermal properties and thermal stability. We found that margarine and vegetable shortening are not useful for TES due to their low latent heat of fusion, ΔfusH, and poor thermal stability. In contrast, coconut oil remained thermally stable after 200 melt-freeze cycles, and has a large ΔfusH of 105 ± 11 J g−1, a low degree of supercooling and a transition temperature, Tmpt = 24.5 ± 1.5 °C, that makes it very useful for TES in buildings. We also determined coconut oil’s heat capacity and thermal conductivity as functions of temperature and used the measured properties to evaluate the feasibility of coconut oil for thermal buffering and passive heating of a residential-scale greenhouse.


Sign in / Sign up

Export Citation Format

Share Document