scholarly journals Modeling of critical strain for dynamic recrystallization of niobium microalloyed steels

Author(s):  
Jun Xing ◽  
Hanlin Ding ◽  
Guohui Zhu ◽  
Fan Li ◽  
Junliang Li

Abstract The critical strain for dynamic recrystallization (DRX) is most important in designing rolling schedules for the refinement of grain size by boundary-induced transformation mechanisms. Modeling of the critical strain for DRX from the stress-strain curves obtained from hot compression was physically built in this paper. The stress-strain behaviour of materials during hot deformation should be a combination of work-hardening and recrystallization softening. Before DRX occurred, the stress-strain behaviours could be described by a constitutive equation in which basic strain hardening and the effect of strain rate and temperature on stress-strain behaviour are included. Once DRX was promoted, obvious deviation between the experimental and calculated stress-strain curves appeared, which denoted the critical strain for DRX. The modeling in this work could be used not only to accurately calculate the critical strain for DRX but also to analyze the dynamic softening behaviours during hot deformation. To validate the calculated results, the stress-strain database was analyzed in the H beam sample deformed at 1000C with a strain rate of 0.1/s, and a critical strain of 0.22 was obtained by this novel method as an example. The calculated result is in good agreement with the experimental data obtained by micrographical observations.

2020 ◽  
Vol 1 (1) ◽  
pp. 01-05
Author(s):  
J.J. Wang ◽  
Y.L. Kang ◽  
Y.L. Liu ◽  
H Yu

The thermal deformation and precipitation behavior at 900-1100℃ and strain rate of 0.1-5s-1 were studied by Gleeble-3800 thermal simulator of Q1030 high strength steel. The activation energy of hot deformation in austenite region was determined by regression method, and the hot deformation equation of the Q1030 high strength steel was established. The critical strain and peak strain of dynamic recrystallization were predicted accurately by fitting the inflection point with cubic polynomial of curve of Q1030 high strength steel, and relationship between critical strain and Z parameter was established. Finally, the precipitation behavior of Nb and Ti particles during low strain rate deformation was studied, the results show that the precipitated phases in steel are rectangular TiN, quadratic (Nb, Ti) (C, N) carbonitride, elliptical (Nb, Ti) C carbide and NbC. Thermodynamic calculation shows that the order of precipitation of the second phase in steel is TiN, TiC, NbC and NbN.


2004 ◽  
Vol 449-452 ◽  
pp. 577-580
Author(s):  
Young Sang Na ◽  
Young Mok Rhyim ◽  
J.Y. Lee ◽  
Jae Ho Lee

In order to quantitatively analyze the critical strain for the initiation of dynamic recrystallization in Ni-Fe-based Alloy 718, a series of uniaxial compression tests was conducted in the temperature range 927°C - 1066°C and the strain rate range 5 x 10-4s-1- 5 s-1with varying initial grain size. The critical strains were graphically determined based on one parameter approach and microscopically confirmed. The effect of γ'' (matrix-hardening phase) and δ (grain boundary phase)on the critical strain was simply discussed. The constitutive model for the critical strain of Alloy 718 was constructed using the experimental data obtained from the higher strain rate and the temperature range between 940°C and 1040°C.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 605
Author(s):  
Franco Lizzi ◽  
Kashyap Pradeep ◽  
Aleksandar Stanojevic ◽  
Silvana Sommadossi ◽  
Maria Cecilia Poletti

Inconel®718 is a well-known nickel-based super-alloy used for high-temperature applications after thermomechanical processes followed by heat treatments. This work describes the evolution of the microstructure and the stresses during hot deformation of a prototype alloy named IN718WP produced by powder metallurgy with similar chemical composition to the matrix of Inconel®718. Compression tests were performed by the thermomechanical simulator Gleeble®3800 in a temperature range from 900 to 1025 °C, and strain rates scaled from 0.001 to 10 s−1. Flow curves of IN718WP showed similar features to those of Inconel®718. The relative stress softening of the IN718WP was comparable to standard alloy Inconel®718 for the highest strain rates. Large stress softening at low strain rates may be related to two phenomena: the fast recrystallization rate, and the coarsening of micropores driven by diffusion. Dynamic recrystallization grade and grain size were quantified using metallography. The recrystallization grade increased as the strain rate decreased, although showed less dependency on the temperature. Dynamic recrystallization occurred after the formation of deformation bands at strain rates above 0.1 s−1 and after the formation of subgrains when deforming at low strain rates. Recrystallized grains had a large number of sigma 3 boundaries, and their percentage increased with strain rate and temperature. The calculated apparent activation energy and strain rate exponent value were similar to those found for Inconel®718 when deforming above the solvus temperature.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3623 ◽  
Author(s):  
Danying Zhou ◽  
Hua Gao ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

A self-designed Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe wt%) titanium alloy is a new type of low-cost high strength titanium alloy. In order to understand the hot deformation behavior of Ti-35421 alloy, isothermal compression tests were carried out under a deformation temperature range of 750–930 °C with a strain rate range of 0.01–10 s−1 in this study. Electron backscatter diffraction (EBSD) was used to characterize the microstructure prior to and post hot deformation. The results show that the stress–strain curves have obvious yielding behavior at a high strain rate (>0.1 s−1). As the deformation temperature increases and the strain rate decreases, the α phase content gradually decreases in the α + β phase region. Meanwhile, spheroidization and precipitation of α phase are prone to occur in the α + β phase region. From the EBSD analysis, the volume fraction of recrystallized grains was very low, so dynamic recovery (DRV) is the dominant deformation mechanism of Ti-35421 alloy. In addition to DRV, Ti-35421 alloy is more likely to occur in continuous dynamic recrystallization (CDRX) than discontinuous dynamic recrystallization (DDRX).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qiang Fu ◽  
Wuhua Yuan ◽  
Wei Xiang

In the present work, the hot deformation behavior of TB18 titanium alloy was investigated by isothermal hot compression tests with temperatures from 650 to 880°C and strain rates from 0.001 to 10 s−1. The flow curves after friction and temperature correction show that the peak stress decreased with the temperature increase and the strain rate decrease. Three typical characteristics of flow behavior indicate the dynamic softening behavior during hot deformation. At a strain rate of 0.001∼0.01 s−1, the flow stress continues to decrease as the strain rate increases after the flow stress reaches the peak stress; the flow softening mechanism is dynamic recovery and dynamic recrystallization at a lower temperature and dynamic recrystallization at a higher temperature. The discontinuous yielding phenomenon could be seen at a strain rate of 1 s−1, dynamic recrystallization took place in the β single-phase zone, and flow localization bands were observed in the α + β two-phase zone. At a higher strain rate of 10 s−1, the flow instabilities were referred to as the occurrence of flow localization by adiabatic heat. Constitutive equation considering the compensation of strain was also established, and the results show high accuracy to predict the flow stress with the correlation coefficient of 99.2% and the AARE of 6.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document