scholarly journals The structure and mechanical properties of Cr-based Cr-Ti alloy films

Author(s):  
Gang Liu ◽  
Miao Wang ◽  
Jianjun Xu ◽  
Min Huang ◽  
Chen Wang ◽  
...  

Abstract Previous studies have dealt with Cr and its alloy films that exhibit promising characteristics as surface modification layers for antiwear, anticorrosive, and decorative applications. However, the effect of Ti alloying on the structure and mechanical properties of Cr films has not been studied. This work aimed to the structure and mechanical properties of Cr-Ti alloy films in the Cr-rich side. To this end, pure Cr, Cr-6 at.% Ti, Cr-11 at.% Ti, Cr-16 at.% Ti, and Cr-21 at.% Ti alloy films were prepared by magnetron sputtering, and the structure and mechanical properties of the films were evaluated. The results indicated that all the films exhibited a Cr-based growth with body-centered cubic structure, and increasing the Ti content decreased the (110) orientation growth of Cr basis. Ti alloying increased the hardness of the films, while leaded to a monotonic decrease in the modulus of the films. The first-principles method was employed to demonstrate that the reduced modulus was determined by the Ti alloying degree, rather than the orientation evolution of the films. The analysis of H/E value suggested that the wear resistance of the films was improved by Ti alloying. The mechanical properties of present Cr-Ti alloy films, and other Cr-based alloy films or metallic glasses in publications were compared and discussed. We proposed that Ti alloying is a considerable way to explore advanced mechanical properties of Cr-based alloy films.

2011 ◽  
Vol 66-68 ◽  
pp. 741-746
Author(s):  
Jia Hua Zou ◽  
Zhi Chen Zhang ◽  
Shu Quan Sun

In the present study, the Zr-Cu-Ni-Al based bulk metallic glasses with different Ti addition was successfully prepared by suction casting . It was found that the glass forming ability was improved with increasing of Ti content from 3 at.% to 7 at.%. However, with increasing of Ti content, the room-temperature plasticity decreased from 4.33% to 0.66 %.


2019 ◽  
Author(s):  
Amalia Rapakousiou ◽  
Alejandro López-moreno ◽  
Belén Nieto-Ortega ◽  
M. Mar Bernal ◽  
Miguel A. Monclús ◽  
...  

We introduce poly(1,6-pyrene terephthalamide) polymer (PPyrTA) as an aromatic polyamide analogue of poly(p-phenylene terephthalamide) (PPTA), also known as Kevlar®. This work shows that the incorporation of polycyclic aromatic pyrene moieties improves drastically the mechanical properties of the polymeric structure, increasing elastic nanoindentation-determined modulus and hardness by factors of 1.9 and 4.3, respectively. Liquid deprotonated dispersions of PPyrTA nanofibers were used as nanoscale building block for producing large-surface, free-standing polymer macroscopic nanofilms. This 2D assembly leads to further significant improvements in reduced modulus and hardness (more than twice) compared to the starting polymer macroscale fibres, due to a better re-organizational arrangement of the PPyrTA nanofibers in the nanofilms, formed under 2D spatial confinement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahib Hasan ◽  
Khagendra Baral ◽  
Neng Li ◽  
Wai-Yim Ching

AbstractChalcogenide semiconductors and glasses have many applications in the civil and military fields, especially in relation to their electronic, optical and mechanical properties for energy conversion and in enviormental materials. However, they are much less systemically studied and their fundamental physical properties for a large class chalcogenide semiconductors are rather scattered and incomplete. Here, we present a detailed study using well defined first-principles calculations on the electronic structure, interatomic bonding, optical, and mechanical properties for 99 bulk chalcogenides including thirteen of these crytals which have never been calculated. Due to their unique composition and structures, these 99 bulk chalcogenides are divided into two main groups. The first group contains 54 quaternary crystals with the structure composition (A2BCQ4) (A = Ag, Cu; B = Zn, Cd, Hg, Mg, Sr, Ba; C = Si, Ge, Sn; Q = S, Se, Te), while the second group contains scattered ternary and quaternary chalcogenide crystals with a more diverse composition (AxByCzQn) (A = Ag, Cu, Ba, Cs, Li, Tl, K, Lu, Sr; B = Zn, Cd, Hg, Al, Ga, In, P, As, La, Lu, Pb, Cu, Ag; C = Si, Ge, Sn, As, Sb, Bi, Zr, Hf, Ga, In; Q = S, Se, Te; $$\hbox {x} = 1$$ x = 1 , 2, 3; $$\hbox {y} = 0$$ y = 0 , 1, 2, 5; $$\hbox {z} = 0$$ z = 0 , 1, 2 and $$\hbox {n} = 3$$ n = 3 , 4, 5, 6, 9). Moreover, the total bond order density (TBOD) is used as a single quantum mechanical metric to characterize the internal cohesion of these crystals enabling us to correlate them with the calculated properties, especially their mechanical properties. This work provides a very large database for bulk chalcogenides crucial for the future theoretical and experimental studies, opening opportunities for study the properties and potential application of a wide variety of chalcogenides.


Sign in / Sign up

Export Citation Format

Share Document