scholarly journals Analysis of the electrical and optical properties of PEDOT:PSS/PVA blends for low-cost and high-performance organic electronic and optoelectronic devices

2015 ◽  
Vol 2 (1) ◽  
pp. 015002 ◽  
Author(s):  
Olivia Carr ◽  
Giovani Gozzi ◽  
Lucas Fugikawa Santos ◽  
Roberto Mendonça Faria ◽  
Dante Luis Chinaglia
Micromachines ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 350 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

Graphene transparent conductive electrodes are highly attractive for photodetector (PD) applications due to their excellent electrical and optical properties. The emergence of graphene/semiconductor hybrid heterostructures provides a platform useful for fabricating high-performance optoelectronic devices, thereby overcoming the inherent limitations of graphene. Here, we review the studies of PDs based on graphene/semiconductor hybrid heterostructures, including device physics/design, performance, and process technologies for the optimization of PDs. In the last section, existing technologies and future challenges for PD applications of graphene/semiconductor hybrid heterostructures are discussed.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 329 ◽  
Author(s):  
Dong Shin ◽  
Suk-Ho Choi

It is necessary to develop semitransparent photovoltaic cell for increasing the energy density from sunlight, useful for harvesting solar energy through the windows and roofs of buildings and vehicles. Current semitransparent photovoltaics are mostly based on Si, but it is difficult to adjust the color transmitted through Si cells intrinsically for enhancing the visual comfort for human. Recent intensive studies on translucent polymer- and perovskite-based photovoltaic cells offer considerable opportunities to escape from Si-oriented photovoltaics because their electrical and optical properties can be easily controlled by adjusting the material composition. Here, we review recent progress in materials fabrication, design of cell structure, and device engineering/characterization for high-performance/semitransparent organic and perovskite solar cells, and discuss major problems to overcome for commercialization of these solar cells.


Nanoscale ◽  
2018 ◽  
Vol 10 (19) ◽  
pp. 9212-9217 ◽  
Author(s):  
Yanbin Luo ◽  
Xin Yan ◽  
Jinnan Zhang ◽  
Bang Li ◽  
Yao Wu ◽  
...  

A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices.


2013 ◽  
Vol 684 ◽  
pp. 85-89 ◽  
Author(s):  
Qian Zhao ◽  
Xue Qing Xu ◽  
Gang Xu

Sb-doped SnO2 (ATO) films were successfully prepared by the spray-pyrolysis method with SnCl2•2H2O and SbCl3 as precursors. The structural, surface morphological, electrical and optical properties of the films were studied in details. The results indicated that all films consisted of tetragonal cassiterite SnO2 with preferred orientation along (110) and (200) crystal plane. A minimum resistivity as low as 1.59×10-3 Ω∙cm has been achieved. The infrared emissivity of the films on the surface of glass was ca. 0.36, which presents potential application in the low-emission window and building ceramics.


2019 ◽  
Vol 37 (1) ◽  
pp. 127-135 ◽  
Author(s):  
W. Christopher Immanuel ◽  
S. Paul Mary Deborrah ◽  
S.S.R. Inbanathan ◽  
D. Nithyaa Sree

AbstractPolycrystalline chalcogenide semiconductors play a vital role in solar cell applications due to their outstanding electrical and optical properties. Among the chalcogenide semi-conductors, CdZnS is one kind of such important material for applications in various modern solid state devices such as solar cells, light emitting diode, detector etc. Due to their applications in numerous electro-optic devices, group II-VI semiconductors have been studied extensively. In recent years, major attention has been given to the study of electrical and optical properties of CdZnS thin films. In this work, Cd1−xZnxS thin films were prepared by chemical bath deposition technique. Phase purity and surface morphology properties were analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) studies. Chemical composition was studied using energy dispersive spectrophotometry (EDS). Optical band gap property was investigated using UV-Spectroscopy. Electrical conductivity studies were performed by two probe method and thermoelectric power setup (TEP) to determine the type of the material. This work reports the effect of Zn on structural, electrical, microstructural and optical properties of these films.


Author(s):  
Xiao-Qing Yan ◽  
Xin Zhao ◽  
Haijie Xu ◽  
Lei Zhang ◽  
Dongqi Liu ◽  
...  

Tunable optical properties could expand the functionalities of optoelectronic devices, exploring materials with tunable optical properties is important for the development of high-performance optoelectronic devices. CuInP2S6 (CIPS) is a ferroelectric...


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 901
Author(s):  
Aneeqa Bashir ◽  
Hina Siddiqui ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

This paper demonstrates the high yield and cost effectiveness of a simple and ecofriendly water-based solution processing, to produce Zinc-doped Zirconia (Zn-ZrO2) composite thin films, onto glass substrates, with excellent optical properties that make them of great interest for optical and microelectronics technologies. The effect of Zn variation (given as 10, 15, 20 at.%) on the crystallization, microstructure, and optical properties of ZrO2 film was examined. The addition of Zn did not restructure the ZrO2 lattice, as the results indicated by X-ray diffraction (XRD) and Raman spectroscopy revealed neither any mixed or individual phases; rather, all the films retained the amorphousness. Nonetheless, Zn did control the grain formation at the film surfaces, thereby changing the surface morphology. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) evidenced homogeneous, compact, crack-free, and dense films with surface roughness below 2 nm indicating smooth surfaces. The films were highly transparent (>80%) with tunable optical band gap Eg (5.21 to 4.66 eV) influenced by Zn dopant. Optical constants such as refractive index (n), extinction coefficient (k), and dielectric constant (ε) were obtained from spectroscopic ellipsometry (SE), and a correlation was established with respect to the doping level. A high value of n > 2 value indicated high packing density in these films, and it decreased slightly from 2.98 to 2.60 (at 632 nm); whereas, optical losses were brought down with increasing Zn indicated by decreasing k values. The photoluminescence (PL) spectra showed UV emissions more pronounced than the blue emissions indicating good structural quality of all the films. Nonetheless, added defects from Zn had suppressed the PL emission. The technique presented in this work, thus, manifests as high performance and robust and has the potential comparable to the sophisticated counter techniques. Furthermore, the Zn-ZrO2 films are promising for a low-cost solution to processed microelectronics and optical technologies after reaching high performance targets with regards to the electrical properties.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 604 ◽  
Author(s):  
Junjun Wang ◽  
Junsheng Yu ◽  
Dongyu Bai ◽  
Zhuobin Li ◽  
Huili Liu ◽  
...  

As a synthetic renewable and biodegradable material, the application of polylactide (PLA) in the green flexible electronics has attracted intensive attention due to the increasingly serious issue of electronic waste. Unfortunately, the development of PLA-based optoelectronic devices is greatly hindered by the poor heat resistance and mechanical property of PLA. To overcome these limitations, herein, we report a facile and promising route to fabricate silver nanowires/PLA (AgNW/PLA) film with largely improved properties by utilizing the stereocomplex (SC) crystallization between poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA). Through embedding the AgNW networks into the PLLA:PDLA blend matrix via a transfer method, the AgNW/PLLA:PDLA film with both high transparency and excellent conductivity was obtained. Compared with the AgNW/PLLA film, the formation of SC crystallites in the composites matrix could significantly enhance not only heat resistance but also mechanical strength of the AgNW/PLLA:PDLA film. Exceptionally, the AgNW/PLLA:PDLA film exhibited superior flexibility and could maintain excellent electrical conductivity stability even under the condition of 10,000 repeated bending cycles and 100 tape test cycles. In addition, the organic light-emitting diodes (OLEDs) with the AgNW/PLLA:PDLA films as electrodes were successfully fabricated in this work for the first time and they exhibited highly flexible, luminous, as well as hydrolytic degradation properties. This work could provide a low-cost and environment-friendly avenue towards fabricating high-performanced PLA-based biodegradable electronics.


Sign in / Sign up

Export Citation Format

Share Document