OFM recirculation and OFM suction: Advanced in-vivo open flow microperfusion methods for direct and absolute quantification of albumin in interstitial fluid

Author(s):  
Joanna Hummer ◽  
Simon Schwingenschuh ◽  
Reingard Raml ◽  
Beate Boulgaropoulos ◽  
Gerd Schwagerle ◽  
...  
2010 ◽  
Vol 299 (1) ◽  
pp. G255-G264 ◽  
Author(s):  
Elise S. Demitrack ◽  
Manoocher Soleimani ◽  
Marshall H. Montrose

Gastric surface pH (pHo) transiently increases in response to focal epithelial damage. The sources of that increase, either from paracellular leakage of interstitial fluid or transcellular acid/base fluxes, have not been determined. Using in vivo microscopy approaches we measured pHowith Cl-NERF, tissue permeability with intravenous fluorescent-dextrans to label interstitial fluid (paracellular leakage), and gastric epithelial intracellular pH (pHi) with SNARF-5F (cellular acid/base fluxes). In response to two-photon photodamage, we found that cell-impermeant dyes entered damaged cells from luminal or tissue compartments, suggesting a possible slow transcellular, but not paracellular, route for increased permeability after damage. Regarding cytosolic acid/base status, we found that damaged cells acidified (6.63 ± 0.03) after photodamage, compared with healthy surface cells both near (7.12 ± 0.06) and far (7.07 ± 0.04) from damage ( P < 0.05). This damaged cell acidification was further attenuated with 20 μM intravenous EIPA (6.34 ± 0.05, P < 0.05) but unchanged by addition of 0.5 mM luminal H2DIDS (6.64 ± 0.08, P > 0.05). Raising luminal pH did not realkalinize damaged cells, suggesting that the mechanism of acidification is not attributable to leakiness to luminal protons. Inhibition of apical HCO3−secretion with 0.5 mM luminal H2DIDS or genetic deletion of the solute-like carrier 26A9 (SLC26A9) Cl−/HCO3−exchanger blocked the pHoincrease normally observed in control animals but did not compromise repair of damaged tissue. Addition of exogenous PGE2significantly increased pHoin wild-type, but not SLC26A9 knockout, animals, suggesting that prostaglandin-stimulated HCO3−secretion is fully mediated by SLC26A9. We conclude that cellular HCO3−secretion, likely through SLC26A9, is the dominant mechanism whereby surface pH transiently increases in response to photodamage.


2017 ◽  
Vol 19 (5) ◽  
pp. 305-314 ◽  
Author(s):  
Katrin Tiffner ◽  
Beate Boulgaropoulos ◽  
Christian Höfferer ◽  
Thomas Birngruber ◽  
Niels Porksen ◽  
...  

1999 ◽  
Vol 276 (2) ◽  
pp. E401-E408 ◽  
Author(s):  
L. Schaupp ◽  
M. Ellmerer ◽  
G. A. Brunner ◽  
A. Wutte ◽  
G. Sendlhofer ◽  
...  

To gain direct access to the interstitial fluid (ISF), a new technique called open-flow microperfusion has been evaluated. This method is based on a double-lumen catheter with macroscopic (0.3–0.5 mm diameter) perforations that is inserted into the subcutaneous adipose tissue and constantly perfused. Thus partial equilibration between the ISF and the perfusion fluid occurs. The glucose concentration of the ISF was determined by established (zero flow rate, no net flux, and recirculation procedures) and new (ionic reference and suction technique) calibration methods by use of open-flow microperfusion. The data show that 1) the glucose concentration in the ISF is significantly lower than the corresponding arterialized venous plasma values during basal steady-state conditions (adipose tissue 3.2 ± 0.10 mM, plasma 5.27 ± 0.12 mM) as well as during hyperglycemic clamp experiments (adipose tissue 7.3 ± 0.13 mM, plasma 9.91 ± 0.16 mM), and 2) it is possible to determine the recovery continuously by using the ion concentration of the ISF as an internal standard (ionic reference).


2007 ◽  
Vol 92 (3) ◽  
pp. 857-864 ◽  
Author(s):  
Jeremy W. Tomlinson ◽  
Mark Sherlock ◽  
Beverley Hughes ◽  
Susan V. Hughes ◽  
Fiona Kilvington ◽  
...  

Abstract Context: The pathophysiological importance of glucocorticoids (GCs) is exemplified by patients with Cushing’s syndrome who develop hypertension, obesity, and insulin resistance. At a cellular level, availability of GCs to the glucocorticoid and mineralocorticoid receptors is controlled by the isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD). In liver and adipose tissue, 11β-HSD1 converts endogenous, inactive cortisone to active cortisol but also catalyzes the bioactivation of the synthetic prednisone to prednisolone. Objective: The objective of the study was to compare markers of 11β-HSD1 activity and demonstrate that inhibition of 11β-HSD1 activity limits glucocorticoid availability to adipose tissue. Design and Setting: This was a clinical study. Patients: Seven healthy male volunteers participated in the study. Intervention: Intervention included carbenoxolone (CBX) single dose (100 mg) and 72 hr of continuous treatment (300 mg/d). Main Outcome Measures: Inhibition of 11β-HSD1 was monitored using five different mechanistic biomarkers (serum cortisol and prednisolone generation, urinary corticosteroid metabolite analysis by gas chromatography/mass spectrometry, and adipose tissue microdialysis examining cortisol generation and glucocorticoid-mediated glycerol release). Results: Each biomarker demonstrated reduced 11β-HSD1 activity after CBX administration. After both a single dose and 72 hr of treatment with CBX, cortisol and prednisolone generation decreased as did the urinary tetrahydrocortisol+5α-tetrahydrocortisol to tetrahydrocortisone ratio. Using adipose tissue microdialysis, we observed decreased interstitial fluid cortisol availability with CBX treatment. Furthermore, a functional consequence of 11β-HSD1 inhibition was observed, namely decreased prednisone-induced glycerol release into adipose tissue interstitial fluid indicative of inhibition of GC-mediated lipolysis. Conclusion: CBX is able to inhibit rapidly the generation of active GC in human adipose tissue. Importantly, limiting GC availability in vivo has functional consequences including decreased glycerol release.


Sign in / Sign up

Export Citation Format

Share Document