Effect of sand mining on the flow hydrodynamics around an oblong bridge pier

Author(s):  
Abhijit Lade ◽  
Jyotismita Taye ◽  
Bimlesh Kumar

Abstract Extraction of sand from riverbed has catastrophic repercussions on aquatic animalia habitat, water quality, and the environment. Alongside, physical alterations in the fluvial hydraulics arising on account of sand mining are also worthy of attention. Flows passing over the pits excavated in a channel have enhanced erosive propensity, which can be a cause of concern for the downstream hydraulic structures. The complex nature of flow interacting with the bridge piers after passing over a mining pit is not fully understood. Experiments were conducted to apprehend the effects of a dredged pit on the turbulence flow-field around an oblong pier. Flow was passed in an erodible sand bed rectangular channel having an oblong pier for the first case. In the second case, a pit was dredged in the mobile bed to replicate a mined channel, and the pier was subjected to the same discharge. The streambed at the approach of the pier experiences greater mean bed shear because of dredging. The amplification of the instantaneous bed shear beneath the turbulent horseshoe vortex (THSV) zone at the pier front is almost twice due to channel dredging. The findings can be useful in understanding the streambed instabilities around bridge piers in mining-infested channels.

Author(s):  
Carlos Toro-Escobar ◽  
Richard Voigt ◽  
Bruce Melville ◽  
Meng Chiew ◽  
Gary Parker

Design criteria for riprap at bridge piers in rivers is based on the specification of a size, gradation, and cover that does not fail under an appropriately chosen flood flow. Experimental tests of riprap performance at bridge piers to date have relied on a configuration for which the ambient bed is not mobilized, that is, clear-water conditions. In the field, however, riprap is, as a rule, subjected to mobile-bed conditions during floods. Recent experiments by three cooperating research groups (University of Auckland, Nanyang University, and St. Anthony Falls Laboratory) indicate a heretofore unrecognized mechanism for riprap failure under mobile-bed conditions. When the flow is in the dune regime, the passage of successive dunes causes riprap that is never directly entrained by the flow to sink and disperse. Pier scour is realized as a consequence of these processes. In some cases, the depth of scour realized is not significantly less than that which would occur without riprap. When the riprap is fully underlain by a geotextile, edge effects can cause local removal of riprap, upturning of the geotextile, and general failure. When the riprap is underlain by a partial geotextile (i.e., one that covers an area less than the riprap), edge scour causes local sinking that anchors the geotextile. The sinking and dispersion of the rest of the riprap are greatly limited, and the riprap fails only when flow velocities are sufficient for direct entrainment. The experiments suggest improved design criteria for the installation of riprap in the field.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1251 ◽  
Author(s):  
Su-Chin Chen ◽  
Samkele Tfwala ◽  
Tsung-Yuan Wu ◽  
Hsun-Chuan Chan ◽  
Hsien-Ter Chou

A new type of collar, the hooked-collar, was studied through experiments and numerical methods. Tests were conducted using a hooked collar of a width of 1.25b and a height of 0.25b, where b is the bridge-pier width. The hooked-collar efficiency was evaluated by testing different hooked-collar placements within the bridge-pier, which were compared to the bridge-pier without any collar. A double hooked-collar configuration, one placed at the bed level and the other buried 0.25b, was the most efficient at reducing the scour hole. In other cases, a hooked-collar positioned 0.25b above the bed slightly reduced the scour hole and had similar scour patterns when compared to the pier without the hooked-collar. The flow fields along the vertical symmetrical plane in the experiments are also presented. Laboratory experiments and numerical tests show that maximal downflow is highly reduced along with a corresponding decrease in horseshoe vortex strength for the experiments with the hooked-collar, compared to cases without the hooked-collar. The flow fields reveal that the maximum turbulent kinetic energy decreases with the installation of the hooked-collar.


2009 ◽  
Vol 38 (5) ◽  
pp. 1050-1058 ◽  
Author(s):  
Wenrui Huang ◽  
Qiping Yang ◽  
Hong Xiao

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1676 ◽  
Author(s):  
Abhijit D. Lade ◽  
Vishal Deshpande ◽  
Bimlesh Kumar ◽  
Giuseppe Oliveto

Sand mining in an active alluvial channel can compromise the streambed stability of the hydraulic structures nearby. This experimental study is aimed at investigating the effects of rectangular mining pit on the morphodynamics around circular tandem piers in a movable bed. A rectangular pit is excavated upstream of two circular piers embedded in the sand-bed in a tandem arrangement. The results are then compared to a case having only the piers without any mining pit. Turbulent stresses and mean velocities in the near-bed region rise significantly at the upstream region of the piers in the presence of a pit. Also, stronger flow reversal and horseshoe vortices have been detected at the base of the pier front. Due to these alterations in the nature of turbulence, erosion of channel beds upstream of the piers, increased scour depths, scour volume, and lateral erosion of the scour hole have been observed. Dynamic evolution of the local scour at various time scales has been studied using a wavelet cross-correlation method. Spatial evolution of local scour is found to be faster when a pit is excavated in the channel. Thus, mining activities near the piers can lead to significant changes in the flow-field, causing excessive scour around piers.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1462
Author(s):  
Chung-Ta Liao ◽  
Keh-Chia Yeh ◽  
Yin-Chi Lan ◽  
Ren-Kai Jhong ◽  
Yafei Jia

Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability.


2003 ◽  
Vol 125 (2) ◽  
pp. 243-249 ◽  
Author(s):  
L. B. Y. Aldabbagh ◽  
I. Sezai ◽  
A. A. Mohamad

The flow and heat transfer characteristics of an impinging laminar square jet through cross-flow have been investigated numerically by using the three-dimensional Navier-Stokes and energy equations in steady state. The simulations have been carried out for jet to cross-flow velocity ratios between 0.5 and 10 and for nozzle exit to plate distances between 1D and 6D, where D is the jet width. The complex nature of the flow field featuring a horseshoe vortex has been investigated. The calculated results show that the flow structure is strongly affected by the jet-to-plate distance. In addition, for jet-to-plate spacing of one jet width and for jet to cross-flow velocity ratios less than 2.5 an additional peak occurs at about three-dimensional downstream of the jet impingement point. For high jet to cross-flow ratios two horseshoe vortices form around the jet in the case of small jet-to-plate spacings.


Author(s):  
Salim Gareh

The fully-incompressible, viscous and stationary Navier–Stokes equations are solved for the laminar flow over an obstacle placed on the lower of a channel. The Reynolds number is varied from 100 to 400. In all cases studied the flow field proves to be steady. Several distinct flow features are identified: a horseshoe vortex system, inward bending flow at the side walls of the obstacle, a horizontal vortex at the downstream lower-half of the obstacle and a downstream wake containing two counter-rotating vortices. The shape and size of these flow features are mainly dominated by the Reynolds number. For higher Reynolds numbers, both the horseshoe vortex and the wake region extend over a significantly larger area. The correlation of the position of the separation and attachment point with the Reynolds number has been calculated. A detailed analysis is carried out to investigate flow pattern and Nusselt number.


Author(s):  
Lei Luo ◽  
Han Yan ◽  
Wei Du ◽  
Songtao Wang ◽  
Changhai Li ◽  
...  

Abstract In this study, numerical simulations are conducted to investigate the effects of pin fin and dimple shape on the flow structure and heat transfer characteristics in a rectangular channel. The studied shapes for dimple and pin fin are circular, spanwise-elliptical, and streamwise-elliptical, respectively. The flow structure, friction factor, and heat transfer performance are obtained and analyzed with Reynolds number ranging from 10,000 to 50,000. Channel with circular pin fin and dimple is chosen as the Baseline. Channels with spanwise-elliptical pin fins have the best heat transfer augmentation, while also accompanied with the largest friction factor. Spanwise-elliptical pin fin generates the strongest horseshoe vortex which is responsible for the best heat transfer augmentation. Besides, channels with streamwise-elliptical pin fins show the worst heat transfer augmentation and the smallest friction factors. Dimple plays an important role in improving the heat transfer. Spanwise-elliptical dimple yields the best heat transfer augmentation which is attributed to the strongest counter-rotating vortex, while streamwise-elliptical dimple shows the worst heat transfer enhancement.


Sign in / Sign up

Export Citation Format

Share Document