scour holes
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Ruigeng Hu ◽  
Xiuhai Wang ◽  
Hongjun Liu ◽  
Hao Leng

A novel scour protection approach for pipeline using the Ionic Soil Stabilizer (ISS) solidified soil was proposed in this study. The ISS-solidified slurry can be poured adjacent to the pipeline immediately after it was placed, or in the growing scour holes. In the present study, the first type was utilized as the scour protection layer around the pipeline. A series of laboratory flume tests were conducted to validate the protective capacity of ISS-solidified slurry for the pipeline in waves and combined waves and current. Then, the scanning electron microscope (SEM) tests and pore size tests were carried out, respectively, to investigate the mechanism of ISS-solidified slurry for scour protection around the pipeline. Finally, the effects of the ISS-solidified layer for liquefaction stability of non-cohesive subsoil were evaluated. The results indicated that the ISS-solidified slurry is a reliable, economic approach for scour protection around pipelines in the ocean environment. It is noteworthy that if a non-cohesive soil layer underlies the ISS-solidified slurry, it is vulnerable to suffer accumulated liquefaction due to the dense crust structure of the ISS-solidified layer, so the adverse effects for accumulated liquefaction should be considered carefully due to the set of the ISS-solidified layer.


Author(s):  
Rakesh Kumar Chaudhary ◽  
Zulfequar Ahmad ◽  
Surendra Kumar Mishra

Abstract Experiments were performed over smooth and corrugated aprons with different corrugation dimensions to study the scour and flow characteristics under submerged wall jets condition. The scour depth and length are significantly lower for corrugated than smooth rigid aprons. The maximum reductions in scour depth and length are 79 and 83%, respectively. Optimum scour depth and length are found for aspect ratio (ratio of corrugation wave length to amplitude) three for corrugated apron. The factors affecting scour depth and length were analyzed graphically, and empirical equations are proposed for predicting maximum scour depth and length, and the point of maximum scour depth for corrugated aprons. Velocity, turbulence characteristics, and Reynolds stress in scour holes for smooth and corrugated aprons were also studied. HIGHLIGHT This paper presents the scour downstream of corrugated apron and flow characteristics under submerged wall jets. Here scour depth and length reduces significantly than other apron. In this we have tried to develop empirical equation on single size sediment considering all the flow parameter and apron parameter. Besides this we have also conducted study related to turbulence and shear stress and velocity vector profile.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1462
Author(s):  
Chung-Ta Liao ◽  
Keh-Chia Yeh ◽  
Yin-Chi Lan ◽  
Ren-Kai Jhong ◽  
Yafei Jia

Local scour is a common threat to structures such as bridge piers, abutments, and dikes that are constructed on natural rivers. To reduce the risk of foundation failure, the understanding of local scour phenomenon around hydraulic structures is important. The well-predicted scour depth can be used as a reference for structural foundation design and river management. Numerical simulation is relatively efficient at studying these issues. Currently, two-dimensional (2D) mobile-bed models are widely used for river engineering. However, a common 2D model is inadequate for solving the three-dimensional (3D) flow field and local scour phenomenon because of the depth-averaged hypothesis. This causes the predicted scour depth to often be underestimated. In this study, a repose angle formula and bed geometry adjustment mechanism are integrated into a 2D mobile-bed model to improve the numerical simulation of local scour holes around structures. Comparison of the calculated and measured bed variation data reveals that a numerical model involving the improvement technique can predict the geometry of a local scour hole around spur dikes with reasonable accuracy and reliability.


Author(s):  
Xerxes Mandviwalla ◽  
Jesper Roland Kjaergaard Qwist ◽  
Erik Damgaard Christensen

This paper presents an optimization procedure that finds the equilibrium scour depth under a pipeline. Even though much knowledge on scour is available for the most typical marine structures such as a vertical circular monopile of a horizontal pipelines the calculation of the scour depth complex and time-consuming as the transient solution is often modelled as well. In this paper we present a optimization procedure that combined with a computational fluid dynamics, and a model of the bed load finds the equilibrium shape of a scour hole. This can potentially speed up the calculation of the shape of the equilibrium scour hole with a factor of 100. However, it comes with a coast as we will not model the transition and the time scale of the scour hole development.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/LpKq9Twj7zo


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3531
Author(s):  
Manoochehr Shokrian Hajibehzad ◽  
Mahmood Shafai Bejestan ◽  
Vito Ferro

The enhanced permeable groin is a novel eco-friendly and cost-effective technique for bank protection and restoration of meander bends. The behavior of bed deformations due to the distance between the structures has to be studied to design enhanced permeable groins in series properly. In this study, scour morphologies around enhanced permeable groins in series, characterized by four different distances and located in a 180° mild flume bend, for clear water conditions were investigated. The analysis indicated that scour geometrical patterns such as the maximum scour depth nearby the structures and the maximum deposition height between them are strongly affected by the distance between the groins. The results revealed that the maximum scour depth around the structures increases with the distance between structures, the scour holes develop towards the outer bank and create a series of pools that can lead to the bank collapse. All experiments, carried out with different structure distances, demonstrated that the location of thalweg effectively shifted towards the middle of the channel and near the inner bank for high and low particle Froude numbers, respectively. As a general result, a distance between enhanced permeable groins equal to four times the effective length of the structure is recommended for a 180° mild flume bend for the investigated particle Froude numbers. Finally, a general design guideline is presented to a proper design of enhanced permeable groins in series.


2020 ◽  
Vol 8 (11) ◽  
pp. 872
Author(s):  
Yonggang Cui ◽  
Wei Haur Lam ◽  
Zhi Chao Ong ◽  
Lloyd Ling ◽  
Chee Loon Siow ◽  
...  

Experiments were conducted to investigate the seabed scour holes due to the interaction between the twin-propeller jet and quay wall. Vertical quay wall was modelled by using a polyvinyl chloride (PVC) plastic plate in a water tank. The relationship between the positions of the propeller and the vertical quay wall was designed according to the actual working conditions of a ship entering and leaving a port. Propeller-to-wall distance and rotational speed were changed to observe the various scour conditions. The scour depth was measured by using an Acoustic Doppler Velocimeter (ADV). Primary scour hole was found within the jet downstream and secondary scour hole occurred beneath of the propeller. Third scour hole was found close to the quay wall due to horseshoe vortices. The maximum scour position of this third scour hole was found at the jet centre near the quay wall. Temporal formation of scour holes can be divided into three stages: axial scour formation, obstructed scour expansion and equilibrium stages. The quantitative relationships for six characteristic parameters of the scour pit were established including the maximum scour depth (εmax,q), maximum scour depth position (Xm,q), maximum scour width (Wm,q), length of main scour pit (XS,q), maximum deposition height (ZD,q), and location of maximum deposition height (XD,q).


2020 ◽  
Vol 20 (8) ◽  
pp. 3419-3432
Author(s):  
Darshan J. Mehta ◽  
S. M. Yadav

Abstract Scour is now one of the main problems for river as well as for coastline engineering. Bridges are the vital structures which must be designed to prevent failure against the effects of scour. Scour holes can occur without warning and cause the failure of a bridge. The main significant issues in hydraulic and river engineering are to determine the connection between parameters affecting the maximum and minimum depth of scour. The scour depth in the alluvial stream below a river bed differs based on the flows, pier shape, pier size and sediment characteristics. Dual bridges of basically the same structure are placed parallel to and only a small distance away from an existing bridge, either on the upstream or downstream side. Naturally, the backwater generated by dual bridges is bigger than that of a single bridge but lower than the value resulting from separate consideration of the two bridges. In the present work, an hydraulic model is used to simulate the stability of a bridge in the study area, namely ‘Sardar Bridge’ on the Tapi river. Scour profiles for various flood events have been assessed for a particular bridge. The velocity of flow is used to estimate depths of scour at different piers and abutments. Estimating depth of the scour during the design can significantly decrease the overall cost of bridge foundation construction. Results from the present study show that construction of a new bridge should be proposed on the upstream side rather than downside side of the existing bridge. By doing so, hydraulic stability of the existing bridge is ensured.


Sign in / Sign up

Export Citation Format

Share Document