scholarly journals H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

2015 ◽  
Vol 23 (12) ◽  
pp. 958-972 ◽  
Author(s):  
Jan Ježek ◽  
Andrea Dlasková ◽  
Jaroslav Zelenka ◽  
Martin Jabůrek ◽  
Petr Ježek
2018 ◽  
Vol 293 (47) ◽  
pp. 18086-18098 ◽  
Author(s):  
Rajesh Gupta ◽  
Dan C. Nguyen ◽  
Michael D. Schaid ◽  
Xia Lei ◽  
Appakalai N. Balamurugan ◽  
...  

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4– and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein–coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.


2018 ◽  
Vol 10 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Hirotaka Watada ◽  
Masanari Shiramoto ◽  
Shin Irie ◽  
Yasuo Terauchi ◽  
Yuichiro Yamada ◽  
...  

Pancreas ◽  
2011 ◽  
Vol 40 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Hong-ming Li ◽  
Mei Zhang ◽  
Sheng-tao Xu ◽  
Di-zheng Li ◽  
Lin-yun Zhu ◽  
...  

2020 ◽  
Vol 54 (6) ◽  
pp. 3428-3436 ◽  
Author(s):  
Wei-Ping Qin ◽  
Lin-Ying Cao ◽  
Chuan-Hai Li ◽  
Liang-Hong Guo ◽  
John Colbourne ◽  
...  

2018 ◽  
Vol 51 (1) ◽  
pp. 201-216 ◽  
Author(s):  
Arwa M.T. Al-Nahdi ◽  
Annie John ◽  
Haider  Raza

Background/Aims: Numerous studies have reported overproduction of reactive oxygen species (ROS) and alterations in mitochondrial energy metabolism in the development of diabetes and its complications. The potential protective effects of N-acetylcysteine (NAC) in diabetes have been reported in many therapeutic studies. NAC has been shown to reduce oxidative stress and enhance redox potential in tissues protecting them against oxidative stress associated complications in diabetes. In the current study, we aimed to investigate the molecular mechanisms of the protective action of NAC on STZ-induced toxicity in insulin secreting Rin-5F pancreatic β-cells. Methods: Rin-5F cells were grown to 80% confluence and then treated with 10mM STZ for 24h in the presence or absence of 10mM NAC. After sub-cellular fractionation, oxidative stress, GSH-dependent metabolism and mitochondrial respiratory functions were studied using spectrophotometric, flow cytometric and Western blotting techniques. Results: Our results showed that STZ-induced oxidative stress and apoptosis caused inhibition in insulin secretion while NAC treatment restored the redox homeostasis, enhanced insulin secretion in control cells and prevented apoptosis in STZ-treated cells. Moreover, NAC attenuated the inhibition of mitochondrial functions induced by STZ through partial recovery of the mitochondrial enzymes and restoration of membrane potential. STZ-induced DNA damage and expression of apoptotic proteins were significantly inhibited in NAC-treated cells. Conclusion: Our results suggest that the cytoprotective action of NAC is mediated via suppression of oxidative stress and apoptosis and restoration of GSH homeostasis and mitochondrial bioenergetics. This study may, thus, help in better understanding the cellular defense mechanisms of pancreatic β-cells against STZ-induced cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document