scholarly journals Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3030-3039 ◽  
Author(s):  
Geetanjali Sharma ◽  
Eric R. Prossnitz
2018 ◽  
Vol 293 (47) ◽  
pp. 18086-18098 ◽  
Author(s):  
Rajesh Gupta ◽  
Dan C. Nguyen ◽  
Michael D. Schaid ◽  
Xia Lei ◽  
Appakalai N. Balamurugan ◽  
...  

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4– and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein–coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.


2018 ◽  
Vol 10 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Hirotaka Watada ◽  
Masanari Shiramoto ◽  
Shin Irie ◽  
Yasuo Terauchi ◽  
Yuichiro Yamada ◽  
...  

2014 ◽  
Vol 34 (10) ◽  
pp. 2261-2267 ◽  
Author(s):  
Blake J. Cochran ◽  
Radjesh J. Bisoendial ◽  
Liming Hou ◽  
Elias N. Glaros ◽  
Jérémie Rossy ◽  
...  

2019 ◽  
Author(s):  
John T. Walker ◽  
Rachana Haliyur ◽  
Heather A. Nelson ◽  
Matthew Ishahak ◽  
Gregory Poffenberger ◽  
...  

SUMMARYG-protein-coupled-receptors (GPCRs) modulate insulin secretion from β cells and glucagon secretion from α cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. We studied the Gi and Gq GPCR pathways by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles and showed that the dual effects for Gq signaling occur through changes in intracellular Ca2+. By combining pseudoislets with a microfluidic system, we co-registered intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human β and α cells.


2007 ◽  
Vol 196 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Dan-Dan Feng ◽  
Yu-Feng Zhao ◽  
Zi-Qiang Luo ◽  
Damien J Keating ◽  
Chen Chen

Free fatty acids (FFAs) regulate insulin secretion in a complex pattern and induce pancreatic β-cell dysfunction in type 2 diabetes. Voltage-dependent Ca2+ channels (VDCC) in β-cells play a major role in regulating insulin secretion. The aim of present study is to clarify the action of the FFA, linoleic acid, on VDCC in β-cells. The VDCC current in primary cultured rat β-cells were recorded under nystatin-perforated whole-cell recording configuration. The VDCC was identified as high-voltage-gated Ca2+ channels due to there being no difference in current amplitude under holding potential between −70 and −40 mV. Linoleic acid (10 μM) significantly inhibited VDCC currents in β-cells, an effect which was fully reversible upon washout. Methyl-linoleic acid, which does not activate G protein coupled receptor (GPR)40, neither did alter VDCC current in rat β-cells nor did influence linoleic acid-induced inhibition of VDCC currents. Linoleic acid-induced inhibition of VDCC current was not blocked by preincubation of β-cells with either the specific protein kinase A (PKA) inhibitor, H89, or the PKC inhibitor, chelerythrine. However, pretreatment of β-cells with thapsigargin, which depletes intracellular Ca2+ stores, completely abolished linoleic acid-induced decrease in VDCC current. Measurement of intracellular Ca2+ concentration ([Ca2+]i) illustrated that linoleic acid induced an increase in [Ca2+]i and that thapsigargin pretreatment inhibited this increase. Methyl-linoleic acid neither did induce increase in [Ca2+]i nor did it block linoleic acid-induced increase in [Ca2+]i. These results suggest that linoleic acid stimulates Ca2+ release from intracellular Ca2+ stores and inhibits VDCC currents in rat pancreatic β-cells via Ca2+-induced inactivation of VDCC.


Sign in / Sign up

Export Citation Format

Share Document