Theoretical and Experimental Analyses of Optimal Experimental Design for Determination of Hydraulic Conductivity of Cell Membrane

2010 ◽  
Vol 8 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Xiaoming Zhou ◽  
Frank Gao ◽  
Zhiquan Shu ◽  
Jae-Hyun Chung ◽  
Shelly Heimfeld ◽  
...  
1971 ◽  
Vol 26 (12) ◽  
pp. 1302-1311 ◽  
Author(s):  
E. Steudle ◽  
U. Zimmermann

A method is described for the simultaneous determination of rapid changes of the cell turgor pressure (hydrostatic pressure) in algal cells (cell size must be at least 3 mm in diameter), and of the net volume flow across the cell membrane arising after a change of the cell turgor pressure or of the osmotic pressure in the outside medium. On the basis of the equations of irreversible thermodynamics it is possible to calculate the hydraulic conductivity of the cell membrane from these measurements, as it is theoretically shown.The hydraulic conductivities of the marine alga Valonia utricularis determined in two independent ways (by osmotic and hydrostatic experiments) are equal. For exosmosis, Lpex (hydrostatic) and Lpex (osmotic) amounted to (9,6 ± 1,0) ·10-7 and (9,8 ± 1,9) · 10-7 respectively cm · sec-1 · atm-1, and for endomosis, Lpen (hydrostatic) was (9,4 ± 1,1) ·10-7 cm · sec-1 · atm-1.A polarity in the water movement across the cell membranes as discussed in the literature could not be found for Valonia utricularis.


1995 ◽  
Vol 117 (3) ◽  
pp. 400-405 ◽  
Author(s):  
M. J. Wickham ◽  
D. R. Riley ◽  
C. J. Nachtsheim

The determination of loads applied to a structure is often necessary in the design process. In some situations it is not feasible to insert a load cell in the system to measure these applied loads. In these cases, it would be expedient to utilize the structure itself as a load transducer. This can be accomplished by measuring strains at a number of locations on the structure. The precision with which the applied loads can be estimated from measured structural responses depends on the number of strain gages utilized and their placement on the structure. This paper presents a computational methodology which utilizes optimal experimental design techniques to select the number, locations and angular orientations of the strain gages which will provide the most precise load estimates based on the generalized load vector. Selection is made from a candidate set created using a finite element analysis. The application of this method is illustrated with an example.


Talanta ◽  
2011 ◽  
Vol 85 (5) ◽  
pp. 2320-2329 ◽  
Author(s):  
Ali-Akbar Golabchifar ◽  
Mohammad-Reza Rouini ◽  
Bijan Shafaghi ◽  
Saeed Rezaee ◽  
Alireza Foroumadi ◽  
...  

1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


Sign in / Sign up

Export Citation Format

Share Document