scholarly journals New Frontier in Regenerative Medicine: Site-Specific Gene Correction in Patient-Specific Induced Pluripotent Stem Cells

2013 ◽  
Vol 24 (6) ◽  
pp. 571-583 ◽  
Author(s):  
Zita Garate ◽  
Brian R. Davis ◽  
Oscar Quintana-Bustamante ◽  
Jose C. Segovia
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 703-703
Author(s):  
Naoya Takayama ◽  
Shinji Hirata ◽  
Ryoko Jono-Ohnishi ◽  
Sou Nakamura ◽  
Sho-ichi Hirose ◽  
...  

Abstract Abstract 703 Patient-specific, induced pluripotent stem cells (iPSCs) enable us to study disease mechanisms and drug screening. To clarify the phenotypic alterations caused by the loss of c-MPL, the thrombopoietin (TPO) receptor, we established iPSCs derived from skin fibroblasts of a patient who received curative bone marrow transplantation for congenital amegakarycytic thrombocytopenia (CAMT) caused by the loss of the TPO receptor gene, MPL. The resultant CAMT-iPSCs exhibited mutations corresponding to the original donor skin. Then using an in vitro culture system yielding hematopoietic progenitor cells (HPCs), we evaluated the role of MPL on the early and late phases of human hematopoiesis. Although CAMT-iPSCs generated CD34+ HPCs, per se, their colony formation capability was impaired, as compared to control CD34+ HPCs. Intriguingly, both Glycophorin A (GPA)+ erythrocyte development and CD41+ megakaryocyte yields from CAMT-iPSCs were also impaired, suggesting that MPL is indispensable for MEP (megakaryocyte erythrocyte progenitors) development. Prospective analysis along with the hematopoietic hierarchy revealed that, in CAMT-iPSCs but not control iPSCs expressing MPL, mRNA expression and phosphorylation of putative signaling molecules downstream of MPL are severely impaired, as is the transition from CD34+CD43+CD41-GPA- MPP (multipotent progenitors) to CD41+GPA+ MEP. Additional analysis also indicated that c-MPL is required for maintenance of a consistent supply of megakaryocytes and erythrocytes from MEPs. Conversely, complimentary transduction of MPL into CAMT-iPSCs using a retroviral vector restored the defective erythropoiesis and megakaryopoiesis; however, excessive MPL signaling appears to promote aberrant megakaryopoiesis with CD42b (GPIba)-null platelet generation and impaired erythrocyte production. Taken together, our findings demonstrate the usefulness of CAMT-iPSCs for validation of functionality in the human hematopoiesis system. For example, it appears that MPL is not indispensable for the emergence of HPCs, but is indispensible for their maintenance, and for subsequent MEP development. Our results also strongly indicate that an appropriate expression level of an administered gene is necessary to achieve curative gene correction / therapy using patient-derived iPSCs. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Małgorzata Baranek ◽  
Wojciech T Markiewicz ◽  
Jan Barciszewski

The general idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are capable of indefinite self-renewal and differentiation into all cell types of body with origin from the three germ layers of the developing embryo, therefore they have a potential to play a substantial role in regenerative medicine. Easily accessible source of induced pluripotent stem cells may allow obtaining and culturing tissues in vitro. Many improvements in the methods leading to obtain such cells have been made by various research groups in order to limit immunogenicity and tumorigenesis, increase efficiency and accelerate kinetics. One of the approaches affecting pluripotency is usage of small molecule compounds including RNA-derivatives – nucleosides analogues. It would be great to assess general character of such molecules and reveal their new derivatives or modifications to improve induced pluripotent stem cells (iPSCs) reprogramming efficiency. Understanding the epigenetic changes during cellular reprogramming will extend understanding of stem cell biology and lead to potential therapeutic approaches. In this digest of compounds found in literature as proven or putative inductors of cells’ reprogramming to pluripotency there are compounds that may substitute for transgenic nucleic acids delivery in order to improve time and efficiency of reprogramming. Nucleic acids’ derivatives or modifications of particular atoms or substitutes influence modulating activities of small molecules, especially their inhibiting activity.  Due to dosage-dependent effect of small molecules influence on genes, their application concentration needs to be strictly determined.


2020 ◽  
Vol 15 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Yunchang Zhao ◽  
Honghao Liu ◽  
Chunjie Zhao ◽  
Peng Dang ◽  
Haijian Li ◽  
...  

Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yuehong Wu ◽  
Anuja Mishra ◽  
Zhifang Qiu ◽  
Steven Farnsworth ◽  
Suzette D. Tardif ◽  
...  

Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.


2022 ◽  
Vol 23 (2) ◽  
pp. 623
Author(s):  
Junya Zhao ◽  
Miaojin Zhou ◽  
Zujia Wang ◽  
Lingqian Wu ◽  
Zhiqing Hu ◽  
...  

Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene (F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified, human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs), and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into 2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs, compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates, while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high expression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for HA gene therapy.


2021 ◽  
Vol 7 (12) ◽  
pp. eabf7412
Author(s):  
P. Nayak ◽  
A. Colas ◽  
M. Mercola ◽  
S. Varghese ◽  
S. Subramaniam

Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.


Sign in / Sign up

Export Citation Format

Share Document