The Effects of Photobiomodulation Delivered by Light-Emitting Diode on Stem Cells from Human Exfoliated Deciduous Teeth: A Study on the Relevance to Pluripotent Stem Cell Viability and Proliferation

2017 ◽  
Vol 35 (12) ◽  
pp. 659-665 ◽  
Author(s):  
Katia Llanos do Vale ◽  
Durvanei Augusto Maria ◽  
Lara Cristina Picoli ◽  
Alessandro Melo Deana ◽  
Marcelo Betti Mascaro ◽  
...  
2018 ◽  
Vol 28 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Larissa Vilela Pereira ◽  
Ricardo Ferreira Bento ◽  
Dayane B. Cruz ◽  
Cláudia Marchi ◽  
Raquel Salomone ◽  
...  

Post-traumatic lesions with transection of the facial nerve present limited functional outcome even after repair by gold-standard microsurgical techniques. Stem cell engraftment combined with surgical repair has been reported as a beneficial alternative. However, the best association between the source of stem cell and the nature of conduit, as well as the long-term postoperative cell viability are still matters of debate. We aimed to assess the functional and morphological effects of stem cells from human exfoliated deciduous teeth (SHED) in polyglycolic acid tube (PGAt) combined with autografting of rat facial nerve on repair after neurotmesis. The mandibular branch of rat facial nerve submitted to neurotmesis was repaired by autograft and PGAt filled with purified basement membrane matrix with or without SHED. Outcome variables were compound muscle action potential (CMAP) and axon morphometric. Animals from the SHED group had mean CMAP amplitudes and mean axonal diameters significantly higher than the control group ( p < 0.001). Mean axonal densities were significantly higher in the control group ( p = 0.004). The engrafted nerve segment resected 6 weeks after surgery presented cells of human origin that were positive for the Schwann cell marker (S100), indicating viability of transplanted SHED and a Schwann cell-like phenotype. We conclude that regeneration of the mandibular branch of the rat facial nerve was improved by SHED within PGAt. The stem cells integrated and remained viable in the neural tissue for 6 weeks since transplantation, and positive labeling for S100 Schwann-cell marker suggests cells initiated in vivo differentiation.


2016 ◽  
Vol 202 (5-6) ◽  
pp. 269-280 ◽  
Author(s):  
Daniel Martinez Saez ◽  
Robson Tetsuo Sasaki ◽  
Adriana da Costa Neves ◽  
Marcelo Cavenaghi Pereira da Silva

Adult stem cells research has been considered the most advanced sort of medical-scientific research, particularly stem cells from human exfoliated deciduous teeth (SHED), which represent an immature stem cell population. The purpose of this review is to describe the current knowledge concerning SHED from full-text scientific publications from 2003 to 2015, available in English language and based on the keyword and/or abbreviations ‘stem cells from human exfoliated deciduous teeth (SHED)', and individually presented as to the properties of SHED, immunomodulatory properties of SHED and stem cell banking. In summary, these cell populations are easily accessible by noninvasive procedures and can be isolated, cultured and expanded in vitro, successfully differentiated in vitro and in vivo into odontoblasts, osteoblasts, chondrocytes, adipocytes and neural cells, and present low immune reactions or rejection following SHED transplantation. Furthermore, SHED are able to remain undifferentiated and stable after long-term cryopreservation. In conclusion, the high proliferative capacity, easy access, multilineage differentiation capacity, noninvasiveness and few ethical concerns make stem cells from human exfoliated deciduous teeth the most valuable source of stem cells for tissue engineering and cell-based regenerative medicine therapies.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shu Zhu ◽  
Dongyu Min ◽  
Jianhong Zeng ◽  
Yetao Ju ◽  
Yao Liu ◽  
...  

Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population with high self-renewal ability that originates from the cranial neural crest. Since SHED are homologous to the central nervous system, they possess superior capacity to differentiate into neural cells. However, whether and how SHED ameliorate degenerative central nervous disease are unclear. Chronic cerebral ischemia (CCI) is a kind of neurological disease caused by long-term cerebral circulation insufficiency and is characterized by progressive cognitive and behavioral deterioration. In this study, we showed that either systemic transplantation of SHED or SHED infusion into the hippocampus ameliorated cognitive impairment of CCI rats in four weeks after SHED treatment by rescuing the number of neurons in the hippocampus area. Mechanistically, SHED transplantation decreased the apoptosis of neuronal cells in the hippocampus area of CCI rats through downregulation of cleaved caspase-3. In summary, SHED transplantation protected the neuronal function and reduced neuronal apoptosis, resulting in amelioration of cognitive impairment from CCI. Our findings suggest that SHED are a promising stem cell source for cell therapy of neurological diseases in the clinic.


2021 ◽  
Vol 10 (4) ◽  
pp. e34410414249
Author(s):  
Jeferson Luis de Oliveira Stroparo ◽  
Suyany Gabriely Weiss ◽  
Sabrina Cunha da Fonseca ◽  
Lisley Janowski Spisila ◽  
Carla Castiglia Gonzaga ◽  
...  

Aim: In vitro evaluation of the influence of bovine xenogenic biomaterials on stem cells from human exfoliated deciduous teeth (SHEDs). The study was divided into three groups: 1) group C (control), containing only MSCs; 2) group BP, containing MSCs and Bonefill Porous®; 3) group BO, containing MSCs and Bio-Oss®. MSCs were derived from a deciduous tooth from a 7-year-old male donor. An aliquot of cells was subjected to immunophenotyping by flow cytometry. Cell viability (neutral red), cytotoxicity (MTT), and cell proliferation (crystal violet) assays were performed. All groups underwent morphological analysis by light microscopy (LM), and the biomaterial with superior performance was submitted to evaluation by scanning electron microscopy (SEM). Time points of 24, 48, and 72 h of culture were used. All results were evaluated with a significance level of 0.05. Results showed that both biomaterials maintained cell viability and cytotoxicity similar to the control. The BO group showed smaller cell proliferation compared to the other groups. In LM evaluation, the BP group showed more spread and adherent cells than the BO group. In SEM, cells of the BP group showed characteristics of more active cells than those of the control. Bovine xenogenic biomaterials positively influenced SHEDs, while the BP group seemed to present higher potential with SHEDs for future application within in vivo and/or clinical studies.


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
Nur Sazwi Nordin ◽  
Lokman Mohammad Isa ◽  
Syed Zahir Idid ◽  
Widya Lestari ◽  
Basma Ezzat Mustafa ◽  
...  

Introduction: Flaxseeds offer a wide range of pharmacological properties including antioxidant, antibacterial and anticancer. However its effect on mesenchymal stem cells has not been elucidated. Thus, this study aimed to determine the effects of flaxseed crude extract on stem cell from human exfoliated deciduous teeth (SHED) in terms of cell viability, morphology and proliferation activity. Materials and Methods: Whole flaxseeds were ground and extracted with absolute ethanol using soxhlet extractor. The effects of flaxseed on SHED were assessed for cell viability using MTT assay, cell morphology using inverted microscope and proliferative activity describe as population doubling time (PDT) using alamar Blue assay. Fatty acid composition of flaxseed was analysed using gas chromatography-mass spectrometry (GCMS) instrumental technique. Results: The effects of flaxseed on SHED were observed to be dose-dependent, where higher concentration of the extract resulted in lower cell viability. The concentration of the flaxseed required to inhibit 50% of cell viability (IC50) was 10.56±0.22 mg/ml. Morphological observation demonstrated that flaxseed altered the cell morphology at concentration above 8 mg/ml. Based on alamarBlue assay, SHED treated with flaxseed at concentration 0.5, 1, 2, 4, 8, 10.56 mg/ml showed no significant difference of PDT when compared to control (p>.05). GCMS analysis revealed the presence of linolenic acid as major compound, linoleic acid and palmitic acid and oleic acid. Conclusion(s): Crude extract of flaxseed at concentration below 8 mg/ml may be applied in the future study of SHED. The linolenic acid in flaxseed may have been responsible for the cell viability and proliferation activity of SHED.


2013 ◽  
Vol 15 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Nikos Tsagias ◽  
Kokkona-Kouzi Koliakos ◽  
Themistoklis Spyridopoulos ◽  
Michail Pitiakoudis ◽  
Eleni Koliakos ◽  
...  

2015 ◽  
Vol 26 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Ana Paula Silveira Turrioni ◽  
Liege Aldrovandi Montoro ◽  
Fernanda Gonçalves Basso ◽  
Leopoldina de Fátima Dantas de Almeida ◽  
Carlos Alberto de Souza Costa ◽  
...  

<p>Despite several reports regarding tissue regeneration, including pulp repair induced by different light sources, only limited data have been reported concerning the effects of light-emitting diodes (LED) on stem cells from human exfoliated deciduous teeth (SHEDs). The aim of this study was to evaluate the effects of different energy densities of infrared LED on the cell viability, number of cells and mineralized tissue production by SHEDs. SHEDs were obtained from near-exfoliation primary teeth (n=3), seeded in plain DMEM (104 cells/cm2), and irradiated by a LED prototype (LEDTable 850 nm, 40 mW/cm2) delivering 0 (control), 2, 4, 8, 15 or 30 J/cm2 (n=9). Cell viability (MTT assay), cell proliferation (trypan blue assay), and mineralized nodule (MN) formation (alizarin red stain) were assessed 12 and 72 h post-irradiation. Data were subjected to Kruskal-Wallis and Mann-Whitney tests (α=0.05). Cells irradiated with 2 or 4 J/cm2 exhibited higher metabolism at 72 h, and all energy densities provided increase in cell proliferation after 12 h. Regarding MN formation, the best results were observed at 72 h after SHED irradiation with 8 and 15 J/cm2. It was concluded that the cell viability, cell number and MN formation by pulp cells are enhanced after exposure to infrared LED irradiation. Overall, the greatest SHED biostimulation was obtained with 4 and 8 J/cm2.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Siqi Yao ◽  
Lingping Tan ◽  
Huan Chen ◽  
Xiaojun Huang ◽  
Wei Zhao ◽  
...  

Stem cells from human exfoliated deciduous teeth (SHED) are a favourable source for tissue engineering, for its great proliferative capacity and the ease of collection. However, the transplantation of stem cells and the study of stem cell-based tissue engineering require massive stem cells. After long-term expansion, stem cells face many challenges, including limited lifespan, senescence, and loss of stemness. Therefore, a cell line capable of overcoming those problems should be built. In this study, we generated a Bmi-1-immortalized SHED cell line with an enhanced green fluorescent protein (EGFP) marker (SHED-Bmi1-EGFP) using lentiviral transduction. We compared this cell line with the original SHED for cell morphology under a microscope. The expression of Bmi-1 was detected with Western blot. Replicative lifespan determination and colony-forming efficiency assessment were using to assay proliferation capability. Senescence-associated β-galactosidase assay was performed to assay the senescence level of cells. Moreover, multipotency, karyotype, and tumour formation in nude mice of SHED and SHED-Bmi1-EGFP were also tested. Our results confirmed that Bmi-1 immortalization did not affect the main features of SHED. SHED-Bmi1-EGFP could be passaged for a long time and stably expressed EGFP. SHED-Bmi1-EGFP at a late passage showed low activity of β-galactosidase and similar multilineage differentiation as SHED at an early passage. The immortalized cells had no potential tumourigenicity ability in vivo. Moreover, we provided some suggestions for potential applications of the immortalized SHED cell line with the EGFP marker. Thus, the immortalized cell line we built can be used as a functional tool in the lab for long-term studies of SHED and stem cell-based regeneration.


Sign in / Sign up

Export Citation Format

Share Document