scholarly journals Correction: Suppression of Cholangiocarcinoma Cell Growth by Human Umbilical Cord Mesenchymal Stem Cells: A Possible Role of Wnt and Akt Signaling

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
Author(s):  
Juan Liu ◽  
Guoqing Han ◽  
Hui Liu ◽  
Chengyong Qin
2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218437 ◽  
Author(s):  
Daniela Surico ◽  
Valerio Bordino ◽  
Vincenzo Cantaluppi ◽  
David Mary ◽  
Sergio Gentilli ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Lunyu Yang ◽  
Zhang Bin ◽  
Shi Hui ◽  
Li Rong ◽  
Benshuai You ◽  
...  

Mesenchymal stem cells derived from human umbilical cord (hucMSCs) are considered a promising tool for regenerative medicine. circRNAs as newly discovered noncoding RNAs are involved in multiple biological processes. However, little has been known about the function of circRNAs in the proliferation and differentiation of hucMSCs. In this study, we selected several circRNAs expressed in MSCs from circBase and found that CDR1as expression level was markedly significant. We observed that, compared with that of uninduced hucMSCs, the CDR1as expression level of induced hucMSCs decreased with cell induction differentiation. By using siRNA to knock down CDR1as of hucMSCs, we discovered that proliferation was inhibited but the apoptosis increased. In addition, we found that the expression of stemness transcription factors (STFs) was downregulated after CDR1as knockdown and the adipogenesis and osteogenesis potential of hucMSCs was impaired. Our findings suggest that CDR1as takes a part in maintaining proliferation and differentiation of hucMSCs, providing clues for MSC modification and further for stem cell therapy and tissue regeneration.


2013 ◽  
Vol 114 (10) ◽  
pp. 2231-2239 ◽  
Author(s):  
Yunshuai Wang ◽  
Tao Chen ◽  
Hongjie Yan ◽  
Hui Qi ◽  
Chunyan Deng ◽  
...  

2021 ◽  
Author(s):  
Shi-wei Ren ◽  
Yang Song ◽  
Qing-run Zhu ◽  
Min-gang He ◽  
Jie Qiu ◽  
...  

Abstract BackgroundPostmenopausal osteoporosis (PMO) is a relatively common disease characterized by low bone mass and microstructural changes of trabecular bone. The reduced bone strength is caused a variety of complications, including fragility fracture and sarcopenia.MethodsWe used CCK-8 and EdU assays to evaluate cell proliferation rates. The osteogenesis effect was detected using ALP staining, alizarin red staining, and q-PCR. In vivo, the effects of exosomes derived from HUC-MSCs were evaluated using HE staining, IHC staining and Masson staining. In addition, we explored the mechanism of exosomes and found that the AKT signaling pathway played an important role in osteogenesis and cell proliferation.ResultsThis paper mainly explored the function of exosomes derived from human umbilical cord mesenchymal stem cells (HUC-MSCs) and provided a new strategy for the treatment of postmenopausal osteoporosis. ConclusionsIn conclusion, exogenous administration of exosomes can contribute to the treatment postmenopausal osteoporosis to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document