Immediate Intracoronary Delivery of Human Umbilical Cord Mesenchymal Stem Cells Reduces Myocardial Injury by Regulating the Inflammatory Process Through Cell-Cell Contact with T Lymphocytes

2020 ◽  
Vol 29 (20) ◽  
pp. 1331-1345
Author(s):  
Chen Liu ◽  
Li-Na Kang ◽  
Fu Chen ◽  
Dan Mu ◽  
Song Shen ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaohuan Liu ◽  
Ting Feng ◽  
Tianxiang Gong ◽  
Chongyang Shen ◽  
Tingting Zhu ◽  
...  

Background. Human umbilical cord mesenchymal stem cells (UC-MSCs) can regulate the function of immune cells. However, whether and how UC-MSCs can modulate the function of Vγ9Vδ2 T cells has not been fully understood. Methods. The PBMCs or Vγ9Vδ2 T cells were activated and expanded with pamidronate (PAM) and interleukin-2 (IL-2) with or without the presence UC-MSCs. The effects of UC-MSCs on the proliferation, cytokine expression, and cytotoxicity of Vγ9Vδ2 T cells were determined by flow cytometry. The effects of UC-MSCs on Fas-L, TRAIL-expressing Vγ9Vδ2 T cells, and Vγ9Vδ2 T cell apoptosis were determined by flow cytometry. Results. UC-MSCs inhibited Vγ9Vδ2 T cell proliferation in a dose-dependent but cell-contact independent manner. Coculture with UC-MSCs reduced the frequency of IFNγ+ but increased granzyme B+ Vγ9Vδ2 T cells. UC-MSCs inhibited the cytotoxicity of Vγ9Vδ2 T cells against influenza virus H1N1 infected A549 cells and also reduced the frequency of Fas-L+, TRAIL+ Vγ9Vδ2 T cells but failed to modulate the apoptosis of Vγ9Vδ2 T cells. Conclusions. These results indicated that UC-MSCs efficiently suppressed the proliferation and cytotoxicity of Vγ9Vδ2 T cells and modulated their cytokine production. Fas-L and TRAIL were involved in the regulation. Cell contact and apoptosis of Vγ9Vδ2 T cells were not necessary for the inhibition.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xingfu Li ◽  
Yujie Liang ◽  
Xiao Xu ◽  
Jianyi Xiong ◽  
Kan Ouyang ◽  
...  

Background. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess great promise as a therapeutic to repair damaged cartilage. Direct intra-articular injection of mesenchymal stem cells has been shown to reduce cartilage damage and is advantageous as surgical implantation and associated side effects can be avoided using this approach. However, the efficacy of stem cell-based therapy for cartilage repair depends highly on the direct interactions of these stem cells with chondrocytes in the joint. In this study, we have carried out an in vitro cell-to-cell contact coculture study with human articular chondrocytes (hACs) and hUC-MSCs, with the goal of this study being to evaluate interactions between hACs and hUC-MSCs. Methods. Low-density monolayer cultures of hUC-MSCs and hACs were mixed at a ratio of 1 : 1 in direct cell-to-cell contact groups. Results were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Results. A mixed coculture of hUC-MSCs and hACs was found to exhibit synergistic interactions with enhanced differentiation of hUC-MSCs and reduced dedifferentiation of chondrocytes. Mixed cultures after 21 days were found to exhibit sufficient chondrogenic induction. Conclusions. The results from this study suggest the presence of mutual effects between hUC-MSCs and hACs even culture at low density and provide further support for the use of intra-articular injection strategies for cartilage defect treatment.


Lupus ◽  
2019 ◽  
Vol 29 (2) ◽  
pp. 126-135
Author(s):  
B Zheng ◽  
P Zhang ◽  
L Yuan ◽  
R K Chhetri ◽  
Y Guo ◽  
...  

Objectives The present study aimed to explore the effect of umbilical cord mesenchymal stem cells (UC-MSCs) on the modulation of T lymphocytes from system lupus erythematosus (SLE) patients and the possible mechanism. Methods A total of 24 hospitalized SLE patients and 28 healthy individuals were enrolled. T lymphocytes were sorted using Miltenyi magnetic beads. After the addition of recombinant human interleukin (IL)-2 and CD3CD28 T-cell activator, cells were loaded onto six-well plates pre-inoculated or not with UC-MSCs for 1 week of culture. The supernatants were collected for testing inflammatory factors by enzyme-linked immunosorbent assay. Meanwhile, T lymphocytes were collected to assess the expression levels of genes, proteins in relation to SLE and miR-181a by polymerase chain reaction and Western blot. Results Compared with T lymphocytes cultured alone, interferon-γ, IL-4, IL-6 and IL-10 levels were significantly decreased in T lymphocytes from SLE patients co-cultured with UC-MSCs. In addition, the gene and protein expression levels of TNF alpha, osteopontin and nuclear factor-kappa B in T lymphocytes were significantly decreased, while miR-181a expression was markedly elevated ( p < 0.05 or 0.008). Conclusion UC-MSCs have showed certain immunomodulatory and inhibitory effects in vitro on T lymphocytes from SLE patients, which could potentially be a beneficial treatment of the disease. UC-MSCs may up-regulate miR-181a and down-regulate inflammation-related gene expression.


Sign in / Sign up

Export Citation Format

Share Document