Engineered In Vitro Models of Tumor Angiogenesis: Introduction to a New Special Issue Format of Tissue Engineering

2010 ◽  
Vol 16 (7) ◽  
pp. 2129-2131
Author(s):  
Wei Liu
2019 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Shicheng Ye ◽  
Jochem W.B. Boeter ◽  
Louis C. Penning ◽  
Bart Spee ◽  
Kerstin Schneeberger

Bioengineered livers are promising in vitro models for drug testing, toxicological studies, and as disease models, and might in the future be an alternative for donor organs to treat end-stage liver diseases. Liver tissue engineering (LTE) aims to construct liver models that are physiologically relevant. To make bioengineered livers, the two most important ingredients are hepatic cells and supportive materials such as hydrogels. In the past decades, dozens of hydrogels have been developed to act as supportive materials, and some have been used for in vitro models and formed functional liver constructs. However, currently none of the used hydrogels are suitable for in vivo transplantation. Here, the histology of the human liver and its relationship with LTE is introduced. After that, significant characteristics of hydrogels are described focusing on LTE. Then, both natural and synthetic materials utilized in hydrogels for LTE are reviewed individually. Finally, a conclusion is drawn on a comparison of the different hydrogels and their characteristics and ideal hydrogels are proposed to promote LTE.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5609
Author(s):  
Dasharatham Janagama ◽  
Susanta K. Hui

We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.


Author(s):  
Cynthia R. Lee ◽  
Mauro Alini ◽  
James C. Iatridis

The development of in vitro models is critical for furthering understanding of the intervertebral disc and the development of disc regeneration/tissue engineering. An in vitro culture system targeted towards mechano-biology studies of the intervertebral disc (IVD) was built and validated using bovine coccygeal discs. Discs were maintained in culture for up to one week with and without vertebral endplates. Water content and glycosaminoglycan content were found to be stable and cells were metabolically active when cultured under a 5kg static load.


2019 ◽  
Vol 449 ◽  
pp. 178-185 ◽  
Author(s):  
Daniel Karami ◽  
Nathan Richbourg ◽  
Vassilios Sikavitsas

2021 ◽  
pp. 1-30
Author(s):  
Sabrina Morelli ◽  
Antonella Piscioneri ◽  
Simona Salerno ◽  
Loredana De Bartolo

To date, the creation of biomimetic devices for the regeneration and repair of injured or diseased tissues and organs remains a crucial challenge in tissue engineering. Membrane technology offers advanced approaches to realize multifunctional tools with permissive environments well-controlled at molecular level for the development of functional tissues and organs. Membranes in fiber configuration with precisely controlled, tunable topography, and physical, biochemical, and mechanical cues, can direct and control the function of different kinds of cells toward the recovery from disorders and injuries. At the same time, fiber tools also provide the potential to model diseases in vitro for investigating specific biological phenomena as well as for drug testing. The purpose of this review is to present an overview of the literature concerning the development of hollow fibers and electrospun fiber membranes used in bioartificial organs, tissue engineered constructs, and in vitro bioreactors. With the aim to highlight the main biomedical applications of fiber-based systems, the first part reviews the fibers for bioartificial liver and liver tissue engineering with special attention to their multifunctional role in the long-term maintenance of specific liver functions and in driving hepatocyte differentiation. The second part reports the fiber-based systems used for neuronal tissue applications including advanced approaches for the creation of novel nerve conduits and in vitro models of brain tissue. Besides presenting recent advances and achievements, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.


Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 98
Author(s):  
Christophe Capallere ◽  
Marianne Arcioni ◽  
Laura Restellini ◽  
Isabelle Imbert

Recent publications describe various skin disorders in relation to phototypes and aging. The highest phototypes (III to VI) are more sensitive to acne, with the appearance of dark spots due to the inflammation induced by Cutibacterium acnes (previously Propionibacterium acnes). Dryness with aging is due to a lower activity of specific enzymes involved in the maturation of lipids in the stratum corneum. To observe and understand these cutaneous issues, tissue engineering is a perfect tool. Since several years, pigmented epidermis with melanocytes derived from specific phototypes allow to develop in vitro models for biological investigations. In the present study, several models were developed to study various skin disorders associated with phototypes and aging. These models were also used to evaluate selected ingredients’ ability to decrease the negative effects of acne, inflammation, and cutaneous dryness. Hyperpigmentation was observed on our reconstructed pigmented epidermis after the application of C. acnes, and pollutant (PM10) application induced increased inflammatory cytokine release. Tissue engineering and molecular biology offer the capability to modify genetically cells to decrease the expression of targeted proteins. In our case, GCase was silenced to decrease the maturation of lipids and in turn modify the epidermal barrier function. These in vitro models assisted in the development of ethnic skin-focused cosmetic ingredients.


2021 ◽  
Vol 9 (1) ◽  
pp. 70-83
Author(s):  
Daniela Peneda Pacheco ◽  
Natalia Suárez Vargas ◽  
Sonja Visentin ◽  
Paola Petrini

This review defines and explores the engineering process and the multifaceted potential and limitations of models within the biomedical field.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1415
Author(s):  
Marko Milojević ◽  
Jan Rožanc ◽  
Jernej Vajda ◽  
Laura Činč Ćurić ◽  
Eva Paradiž ◽  
...  

The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.


Author(s):  
Gianluca Ciardelli

3D tissue-engineered models are promising tools in the screening and evaluation of drugs and therapies as well as in the investigation of the molecular mechanisms involved in disease onset and progression. In this context, we describe our efforts in soft tissue replication, to design in vitro models that have the potential to provide better insight into the development of ageing process and related pathologies, with particular reference to the cardiovascular field.


Sign in / Sign up

Export Citation Format

Share Document