On the spectral functions of the string

Author(s):  
I. S. Kac ◽  
M. G. Kreĭn
Keyword(s):  
2013 ◽  
Vol 87 (4) ◽  
Author(s):  
Evelyn Tang ◽  
Matthew P. A. Fisher ◽  
Patrick A. Lee

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 477
Author(s):  
Katarzyna Górska ◽  
Andrzej Horzela

In this paper, we show that spectral functions relevant for commonly used models of the non-Debye relaxation are related to the Stieltjes functions supported on the positive semi-axis. Using only this property, it can be shown that the response and relaxation functions are non-negative. They are connected to each other and obey the time evolution provided by integral equations involving the memory function M(t), which is the Stieltjes function as well. This fact is also due to the Stieltjes character of the spectral function. Stochastic processes-based approach to the relaxation phenomena gives the possibility to identify the memory function M(t) with the Laplace (Lévy) exponent of some infinitely divisible stochastic processes and to introduce its partner memory k(t). Both memories are related by the Sonine equation and lead to equivalent evolution equations which may be freely interchanged in dependence of our knowledge on memories governing the process.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A. Liam Fitzpatrick ◽  
Emanuel Katz ◽  
Matthew T. Walters ◽  
Yuan Xin

Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Marcello Baldo

In neutron stars the nuclear asymmetric matter is expected to undergo phase transitions to a superfluid state. According to simple estimates, neutron matter in the inner crust and just below should be in the s-wave superfluid phase, corresponding to the neutron-neutron 1S0 channel. At higher density in the core also the proton component should be superfluid, while in the inner core the neutron matter can be in the 3P2 superfluid phase. Superluidity is believed to be at the basis of the glitches phenomenon and to play a decisive influence on many processes like transport, neutrino emission and cooling, and so on. One of the peculiarity of the superfluid phase is the presence of characteristic collective excitation, the so called ’phonons’, that correspond to smooth modulations of the order parameter and display a linear spectrum at low enough momentum. This paper is a brief review of the different phonons that can appear in Neutron Star superfuid matter and their role in several dynamical processes. Particular emphasis is put on the spectral functions of the different components, that is neutron, protons and electrons, which reveal their mutual influence. The open problems are discussed and indications on the work that remain to be done are given.


Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 159-177
Author(s):  
Rico Zöllner ◽  
Burkhard Kämpfer

A holographic model of probe quarkonia is presented, where the dynamical gravity–dilaton background was adjusted to the thermodynamics of 2 + 1 flavor QCD with physical quark masses. The quarkonia action was modified to account for the systematic study of the heavy-quark mass dependence. We focused on the J/ψ and Υ spectral functions and related our model to heavy quarkonia formation as a special aspect of hadron phenomenology in heavy-ion collisions at LHC.


Sign in / Sign up

Export Citation Format

Share Document