scholarly journals Activation of p42 Mitogen-activated Protein Kinase (MAPK), but not c-Jun NH2-Terminal Kinase, Induces Phosphorylation and Stabilization of MAPK Phosphatase XCL100 inXenopus Oocytes

2002 ◽  
Vol 13 (2) ◽  
pp. 454-468 ◽  
Author(s):  
Michael L. Sohaskey ◽  
James E. Ferrell

Dual-specificity protein phosphatases are implicated in the direct down-regulation of mitogen-activated protein kinase (MAPK) activity in vivo. Accumulating evidence suggests that these phosphatases are components of negative feedback loops that restore MAPK activity to low levels after diverse physiological responses. Limited information exists, however, regarding their posttranscriptional regulation. We cloned two Xenopus homologs of the mammalian dual-specificity MAPK phosphatases MKP-1/CL100 and found that overexpression of XCL100 in G2-arrested oocytes delayed or prevented progesterone-induced meiotic maturation. Epitope-taggedXCL100 was phosphorylated on serine during G2 phase, and on serine and threonine in a p42 MAPK-dependent manner during M phase. Threonine phosphorylation mapped to a single residue, threonine 168. Phosphorylation of XCL100 had no measurable effect on its ability to dephosphorylate p42 MAPK. Similarly, mutation of threonine 168 to either valine or glutamate did not significantly alter the binding affinity of a catalytically inactive XCL100 protein for active p42 MAPK in vivo. XCL100 was a labile protein in G2-arrested and progesterone-stimulated oocytes; surprisingly, its degradation rate was increased more than twofold after exposure to hyperosmolar sorbitol. In sorbitol-treated oocytes expressing a conditionally active ΔRaf-DD:ER chimera, activation of the p42 MAPK cascade led to phosphorylation of XCL100 and a pronounced decrease in the rate of its degradation. Our results provide mechanistic insight into the regulation of a dual-specificity MAPK phosphatase during meiotic maturation and the adaptation to cellular stress.

1999 ◽  
Vol 19 (2) ◽  
pp. 1569-1581 ◽  
Author(s):  
Cathy Tournier ◽  
Alan J. Whitmarsh ◽  
Julie Cavanagh ◽  
Tamera Barrett ◽  
Roger J. Davis

ABSTRACT The c-Jun NH2-terminal protein kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) group and is an essential component of a signaling cascade that is activated by exposure of cells to environmental stress. JNK activation is regulated by phosphorylation on both Thr and Tyr residues by a dual-specificity MAPK kinase (MAPKK). Two MAPKKs, MKK4 and MKK7, have been identified as JNK activators. Genetic studies demonstrate that MKK4 and MKK7 serve nonredundant functions as activators of JNK in vivo. We report here the molecular cloning of the gene that encodes MKK7 and demonstrate that six isoforms are created by alternative splicing to generate a group of protein kinases with three different NH2 termini (α, β, and γ isoforms) and two different COOH termini (1 and 2 isoforms). The MKK7α isoforms lack an NH2-terminal extension that is present in the other MKK7 isoforms. This NH2-terminal extension binds directly to the MKK7 substrate JNK. Comparison of the activities of the MKK7 isoforms demonstrates that the MKK7α isoforms exhibit lower activity, but a higher level of inducible fold activation, than the corresponding MKK7β and MKK7γ isoforms. Immunofluorescence analysis demonstrates that these MKK7 isoforms are detected in both cytoplasmic and nuclear compartments of cultured cells. The presence of MKK7 in the nucleus was not, however, required for JNK activation in vivo. These data establish that theMKK4 and MKK7 genes encode a group of protein kinases with different biochemical properties that mediate activation of JNK in response to extracellular stimuli.


1994 ◽  
Vol 14 (3) ◽  
pp. 1594-1602
Author(s):  
A J Rossomando ◽  
P Dent ◽  
T W Sturgill ◽  
D R Marshak

Mitogen-activated protein kinase kinase 1 (MKK1), a dual-specificity tyrosine/threonine protein kinase, has been shown to be phosphorylated and activated by the raf oncogene product as part of the mitogen-activated protein kinase cascade. Here we report the phosphorylation and inactivation of MKK1 by phosphorylation on threonine 286 and threonine 292. MKK1 contains a consensus phosphorylation site for p34cdc2, a serine/threonine protein kinase that regulates the cell division cycle, at Thr-286 and a related site at Thr-292. p34cdc2 catalyzes the in vitro phosphorylation of MKK1 on both of these threonine residues and inactivates MKK1 enzymatic activity. Both sites are phosphorylated in vivo as well. The data presented in this report provide evidence that MKK1 is negatively regulated by threonine phosphorylation.


2011 ◽  
Vol 286 (22) ◽  
pp. 19605-19616 ◽  
Author(s):  
Debra J. Taxman ◽  
Elizabeth A. Holley-Guthrie ◽  
Max Tze-Han Huang ◽  
Chris B. Moore ◽  
Daniel T. Bergstralh ◽  
...  

ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc−/− but not Nlrp3−/−, Nlrc4−/−, or Casp1−/− macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.


1999 ◽  
Vol 19 (1) ◽  
pp. 229-240 ◽  
Author(s):  
Angela M. Cacace ◽  
Neil R. Michaud ◽  
Marc Therrien ◽  
Karen Mathes ◽  
Terry Copeland ◽  
...  

ABSTRACT Genetic and biochemical studies have identified kinase suppressor of Ras (KSR) to be a conserved component of Ras-dependent signaling pathways. To better understand the role of KSR in signal transduction, we have initiated studies investigating the effect of phosphorylation and protein interactions on KSR function. Here, we report the identification of five in vivo phosphorylation sites of KSR. In serum-starved cells, KSR contains two constitutive sites of phosphorylation (Ser297 and Ser392), which mediate the binding of KSR to the 14-3-3 family of proteins. In the presence of activated Ras, KSR contains three additional sites of phosphorylation (Thr260, Thr274, and Ser443), all of which match the consensus motif (Px[S/T]P) for phosphorylation by mitogen-activated protein kinase (MAPK). Further, we find that treatment of cells with the MEK inhibitor PD98059 blocks phosphorylation of the Ras-inducible sites and that activated MAPK associates with KSR in a Ras-dependent manner. Together, these findings indicate that KSR is an in vivo substrate of MAPK. Mutation of the identified phosphorylation sites did not alter the ability of KSR to facilitate Ras signaling in Xenopus oocytes, suggesting that phosphorylation at these sites may serve other functional roles, such as regulating catalytic activity. Interestingly, during the course of this study, we found that the biological effect of KSR varied dramatically with the level of KSR protein expressed. InXenopus oocytes, KSR functioned as a positive regulator of Ras signaling when expressed at low levels, whereas at high levels of expression, KSR blocked Ras-dependent signal transduction. Likewise, overexpression of Drosophila KSR blocked R7 photoreceptor formation in the Drosophila eye. Therefore, the biological function of KSR as a positive effector of Ras-dependent signaling appears to be dependent on maintaining KSR protein expression at low or near-physiological levels.


2005 ◽  
Vol 390 (3) ◽  
pp. 749-759 ◽  
Author(s):  
Joanne Darragh ◽  
Ana Soloaga ◽  
Victoria A. Beardmore ◽  
Andrew D. Wingate ◽  
Giselle R. Wiggin ◽  
...  

MSK (mitogen- and stress-activated protein kinase) 1 and MSK2 are kinases activated downstream of either the ERK (extracellular-signal-regulated kinase) 1/2 or p38 MAPK (mitogen-activated protein kinase) pathways in vivo and are required for the phosphorylation of CREB (cAMP response element-binding protein) and histone H3. Here we show that the MSKs are involved in regulating the transcription of the immediate early gene Nur77. Stimulation of mouse embryonic fibroblasts with PMA, EGF (epidermal growth factor), TNF (tumour necrosis factor) or anisomycin resulted in induction of the Nur77 mRNA. The induction of Nur77 by TNF and anisomycin was abolished in MSK1/2 double-knockout cells, whereas induction was significantly reduced in response to PMA or EGF. The MSK responsive elements were mapped to two AP (activator protein)-1-like elements in the Nur77 promoter. The induction of Nur77 was also blocked by A-CREB, suggesting that MSKs control Nur77 transcription by phosphorylating CREB bound to the two AP-1-like elements. Consistent with the decrease in Nur77 mRNA levels in the MSK1/2-knockout cells, it was also found that MSKs were required for the induction of Nur77 protein by PMA and TNF. MSKs were also found to be required for the transcription of two genes related to Nur77, Nurr1 and Nor1, which were also transcribed in a CREB- or ATF1 (activating transcription factor-1)-dependent manner. Downstream of anisomycin signalling, a second ERK-dependent pathway, independent of MSK and CREB, was also required for the transcription of Nurr1 and Nor1.


2005 ◽  
Vol 392 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Mercedes Pozuelo Rubio ◽  
David G. Campbell ◽  
Nicholas A. Morrice ◽  
Carol Mackintosh

PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding.


2000 ◽  
Vol 20 (11) ◽  
pp. 3887-3895 ◽  
Author(s):  
Elizabeth Bilsland-Marchesan ◽  
Joaquín Ariño ◽  
Haruo Saito ◽  
Per Sunnerhagen ◽  
Francesc Posas

ABSTRACT Exposure of yeast cells to increases in extracellular osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK). Activation of Hog1 MAPK results in induction of a set of osmoadaptive responses, which allow cells to survive in high-osmolarity environments. Little is known about how the MAPK activation results in induction of these responses, mainly because no direct substrates for Hog1 have been reported. We conducted a two-hybrid screening using Hog1 as a bait to identify substrates for the MAPK, and the Rck2 protein kinase was identified as an interactor for Hog1. Both two-hybrid analyses and coprecipitation assays demonstrated that Hog1 binds strongly to the C-terminal region of Rck2. Upon osmotic stress, Rck2 was phosphorylated in vivo in a Hog1-dependent manner. Furthermore, purified Hog1 was able to phosphorylate Rck2 when activated both in vivo and in vitro. Rck2 phosphorylation occurred specifically at Ser519, a residue located within the C-terminal putative autoinhibitory domain. Interestingly, phosphorylation at Ser519 by Hog1 resulted in an increase of Rck2 kinase activity. Overexpression of Rck2 partially suppressed the osmosensitive phenotype of hog1Δ and pbs2Δ cells, suggesting that Rck2 is acting downstream of Hog1. Consistently, growth arrest caused by hyperactivation of the Hog1 MAPK was abolished by deletion of the RCK2 gene. Furthermore, overexpression of a catalytically impaired (presumably dominant inhibitory) Rck2 kinase resulted in a decrease of osmotolerance in wild-type cells but not in hog1Δ cells. Taken together, our data suggest that Rck2 acts downstream of Hog1, controlling a subset of the responses induced by the MAPK upon osmotic stress.


2005 ◽  
Vol 25 (24) ◽  
pp. 10695-10710 ◽  
Author(s):  
Pradeep K. Pandey ◽  
T. S. Udayakumar ◽  
Xinjie Lin ◽  
Dipali Sharma ◽  
Paul S. Shapiro ◽  
...  

ABSTRACT The TRAP/Mediator coactivator complex serves as a molecular bridge between gene-specific activators and RNA polymerase II. TRAP220/Med1 is a key component of TRAP/Mediator that targets the complex to nuclear hormone receptors and other types of activators. We show here that human TRAP220/Med1 is a specific substrate for extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) family. We demonstrate that ERK phosphorylates TRAP220/Med1 in vivo at two specific sites: threonine 1032 and threonine 1457. Importantly, we found that ERK phosphorylation significantly increases the stability and half-life of TRAP220/Med1 in vivo and correlates with increased thyroid hormone receptor-dependent transcription. Furthermore, ERK phosphorylates TRAP220/Med1 in a cell cycle-dependent manner, resulting in peak levels of expression during the G2/M phase of the cell cycle. ERK phosphorylation of ectopic TRAP220/Med1 also triggered shuttling into the nucleolus, thus suggesting that ERK may regulate TRAP220/Med1 subnuclear localization. Finally, we observed that ERK phosphorylation of TRAP220/Med1 stimulates its intrinsic transcriptional coactivation activity. We propose that ERK-mediated phosphorylation is a regulatory mechanism that controls TRAP220/Med1 expression levels and modulates its functional activity.


1999 ◽  
Vol 19 (6) ◽  
pp. 4379-4389 ◽  
Author(s):  
Rakesh K. Goyal ◽  
Phoebe Lin ◽  
Josna Kanungo ◽  
Aimee S. Payne ◽  
Anthony J. Muslin ◽  
...  

ABSTRACT LIM domain-containing proteins contribute to cell fate determination, the regulation of cell proliferation and differentiation, and remodeling of the cell cytoskeleton. These proteins can be found in the cell nucleus, cytoplasm, or both. Whether and how cytoplasmic LIM proteins contribute to the cellular response to extracellular stimuli is an area of active investigation. We have identified and characterized a new LIM protein, Ajuba. Although predominantly a cytosolic protein, in contrast to other like proteins, it did not localize to sites of cellular adhesion to extracellular matrix or interact with the actin cytoskeleton. Removal of the pre-LIM domain of Ajuba, including a putative nuclear export signal, led to an accumulation of the LIM domains in the cell nucleus. The pre-LIM domain contains two putative proline-rich SH3 recognition motifs. Ajuba specifically associated with Grb2 in vitro and in vivo. The interaction between these proteins was mediated by either SH3 domain of Grb2 and the N-terminal proline-rich pre-LIM domain of Ajuba. In fibroblasts expressing Ajuba mitogen-activated protein kinase activity persisted despite serum starvation and upon serum stimulation generated levels fivefold higher than that seen in control cells. Finally, when Ajuba was expressed in fully developed Xenopus oocytes, it promoted meiotic maturation in a Grb2- and Ras-dependent manner.


2017 ◽  
Vol 38 (5) ◽  
Author(s):  
Dibesh Thapa ◽  
Charlie Nichols ◽  
Rekha Bassi ◽  
Eva Denise Martin ◽  
Sharwari Verma ◽  
...  

ABSTRACT p38α mitogen-activated protein kinase is essential to cellular homeostasis. Two principal mechanisms to activate p38α exist. The first relies on dedicated dual-specificity kinases such as mitogen-activated protein kinase kinase (MAP2K) 3 (MKK3) or 6 (MKK6), which activate p38α by phosphorylating Thr180 and Tyr182 within the activation segment. The second is by autophosphorylation of Thr180 and Tyr182 in cis , mediated by p38α binding the scaffold protein TAB1. The second mechanism occurs during myocardial ischemia, where it aggravates myocardial infarction. Based on the crystal structure of the p38α-TAB1 complex we replaced threonine 185 of p38α with glycine (T185G) to prevent an intramolecular hydrogen bond with Asp150 from being formed. This mutation did not interfere with TAB1 binding to p38α. However, it disrupted the consequent long-range effect of this binding event on the distal activation segment, releasing the constraint on Thr180 that oriented its hydroxyl for phosphotransfer. Based on assays performed in vitro and in vivo , the autoactivation of p38α(T185G) was disabled, while its ability to be activated by upstream MAP2Ks and to phosphorylate downstream substrates remained intact. Furthermore, myocardial cells expressing p38α(T185G) were resistant to injury. These findings reveal a mechanism to selectively disable p38α autoactivation and its consequences, which may ultimately circumvent the toxicity associated with strategies that inhibit p38α kinase activity under all circumstances, such as with ATP-competitive inhibitors.


Sign in / Sign up

Export Citation Format

Share Document