scholarly journals Identification of Constitutive and Ras-Inducible Phosphorylation Sites of KSR: Implications for 14-3-3 Binding, Mitogen-Activated Protein Kinase Binding, and KSR Overexpression

1999 ◽  
Vol 19 (1) ◽  
pp. 229-240 ◽  
Author(s):  
Angela M. Cacace ◽  
Neil R. Michaud ◽  
Marc Therrien ◽  
Karen Mathes ◽  
Terry Copeland ◽  
...  

ABSTRACT Genetic and biochemical studies have identified kinase suppressor of Ras (KSR) to be a conserved component of Ras-dependent signaling pathways. To better understand the role of KSR in signal transduction, we have initiated studies investigating the effect of phosphorylation and protein interactions on KSR function. Here, we report the identification of five in vivo phosphorylation sites of KSR. In serum-starved cells, KSR contains two constitutive sites of phosphorylation (Ser297 and Ser392), which mediate the binding of KSR to the 14-3-3 family of proteins. In the presence of activated Ras, KSR contains three additional sites of phosphorylation (Thr260, Thr274, and Ser443), all of which match the consensus motif (Px[S/T]P) for phosphorylation by mitogen-activated protein kinase (MAPK). Further, we find that treatment of cells with the MEK inhibitor PD98059 blocks phosphorylation of the Ras-inducible sites and that activated MAPK associates with KSR in a Ras-dependent manner. Together, these findings indicate that KSR is an in vivo substrate of MAPK. Mutation of the identified phosphorylation sites did not alter the ability of KSR to facilitate Ras signaling in Xenopus oocytes, suggesting that phosphorylation at these sites may serve other functional roles, such as regulating catalytic activity. Interestingly, during the course of this study, we found that the biological effect of KSR varied dramatically with the level of KSR protein expressed. InXenopus oocytes, KSR functioned as a positive regulator of Ras signaling when expressed at low levels, whereas at high levels of expression, KSR blocked Ras-dependent signal transduction. Likewise, overexpression of Drosophila KSR blocked R7 photoreceptor formation in the Drosophila eye. Therefore, the biological function of KSR as a positive effector of Ras-dependent signaling appears to be dependent on maintaining KSR protein expression at low or near-physiological levels.

1999 ◽  
Vol 19 (6) ◽  
pp. 4121-4133 ◽  
Author(s):  
Lionel le Gallic ◽  
Dionyssios Sgouras ◽  
Gregory Beal ◽  
George Mavrothalassitis

ABSTRACT A limited number of transcription factors have been suggested to be regulated directly by Erks within the Ras/mitogen-activated protein kinase signaling pathway. In this paper we demonstrate that ERF, a ubiquitously expressed transcriptional repressor that belongs to the Ets family, is physically associated with and phosphorylated in vitro and in vivo by Erks. This phosphorylation determines the ERF subcellular localization. Upon mitogenic stimulation, ERF is immediately phosphorylated and exported to the cytoplasm. The export is blocked by specific Erk inhibitors and is abolished when residues undergoing phosphorylation are mutated to alanine. Upon growth factor deprivation, ERF is rapidly dephosphorylated and transported back into the nucleus. Phosphorylation-defective ERF mutations suppress Ras-induced tumorigenicity and arrest the cells at the G0/G1 phase of the cell cycle. Our findings strongly suggest that ERF may be important in the control of cellular proliferation during the G0/G1 transition and that it may be one of the effectors in the mammalian Ras signaling pathway.


2011 ◽  
Vol 438 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Ratnesh K. Srivastav ◽  
Susan Schwede ◽  
Malte Klaus ◽  
Jessica Schwermann ◽  
Matthias Gaestel ◽  
...  

Protein–protein interactions are essential for almost all cellular processes, hence understanding these processes mainly depends on the identification and characterization of the relevant protein–protein interactions. In the present paper, we introduce the concept of TRS (trans-SUMOylation), a new method developed to identify and verify protein–protein interactions in mammalian cells in vivo. TRS utilizes Ubc9-fusion proteins that trans-SUMOylate co-expressed interacting proteins. Using TRS, we analysed interactions of 65 protein pairs co-expressed in HEK (human embryonic kidney)-293 cells. We identified seven new and confirmed 16 known protein interactions, which were determined via endogenous SUMOylation sites of the binding partners or by using SUMOylation-site tags respectively. Four of the new protein interactions were confirmed by GST (glutathione transferase) pull-down and the p38α–Edr2 interaction was verified by co-localization analysis. Functionally, this p38α–Edr2 interaction could possibly be involved in the recruitment of p38α to the polycomb chromatin-remodelling complex to phosphorylate Bmi1. We also used TRS to characterize protein-interaction domains of the protein kinase pairs p38α–MK2 [MK is MAPK (mitogen-activated protein kinase)-activated protein kinase] and ERK3 (extracellular-signal-regulated kinase 3)–MK5 and of the p38α–p53 complex. The ability of TRS to monitor protein interactions in mammalian cells in vivo at levels similar to endogenous expression makes it an excellent new tool that can help in defining the protein interactome of mammalian cells.


2002 ◽  
Vol 13 (2) ◽  
pp. 454-468 ◽  
Author(s):  
Michael L. Sohaskey ◽  
James E. Ferrell

Dual-specificity protein phosphatases are implicated in the direct down-regulation of mitogen-activated protein kinase (MAPK) activity in vivo. Accumulating evidence suggests that these phosphatases are components of negative feedback loops that restore MAPK activity to low levels after diverse physiological responses. Limited information exists, however, regarding their posttranscriptional regulation. We cloned two Xenopus homologs of the mammalian dual-specificity MAPK phosphatases MKP-1/CL100 and found that overexpression of XCL100 in G2-arrested oocytes delayed or prevented progesterone-induced meiotic maturation. Epitope-taggedXCL100 was phosphorylated on serine during G2 phase, and on serine and threonine in a p42 MAPK-dependent manner during M phase. Threonine phosphorylation mapped to a single residue, threonine 168. Phosphorylation of XCL100 had no measurable effect on its ability to dephosphorylate p42 MAPK. Similarly, mutation of threonine 168 to either valine or glutamate did not significantly alter the binding affinity of a catalytically inactive XCL100 protein for active p42 MAPK in vivo. XCL100 was a labile protein in G2-arrested and progesterone-stimulated oocytes; surprisingly, its degradation rate was increased more than twofold after exposure to hyperosmolar sorbitol. In sorbitol-treated oocytes expressing a conditionally active ΔRaf-DD:ER chimera, activation of the p42 MAPK cascade led to phosphorylation of XCL100 and a pronounced decrease in the rate of its degradation. Our results provide mechanistic insight into the regulation of a dual-specificity MAPK phosphatase during meiotic maturation and the adaptation to cellular stress.


2005 ◽  
Vol 390 (3) ◽  
pp. 749-759 ◽  
Author(s):  
Joanne Darragh ◽  
Ana Soloaga ◽  
Victoria A. Beardmore ◽  
Andrew D. Wingate ◽  
Giselle R. Wiggin ◽  
...  

MSK (mitogen- and stress-activated protein kinase) 1 and MSK2 are kinases activated downstream of either the ERK (extracellular-signal-regulated kinase) 1/2 or p38 MAPK (mitogen-activated protein kinase) pathways in vivo and are required for the phosphorylation of CREB (cAMP response element-binding protein) and histone H3. Here we show that the MSKs are involved in regulating the transcription of the immediate early gene Nur77. Stimulation of mouse embryonic fibroblasts with PMA, EGF (epidermal growth factor), TNF (tumour necrosis factor) or anisomycin resulted in induction of the Nur77 mRNA. The induction of Nur77 by TNF and anisomycin was abolished in MSK1/2 double-knockout cells, whereas induction was significantly reduced in response to PMA or EGF. The MSK responsive elements were mapped to two AP (activator protein)-1-like elements in the Nur77 promoter. The induction of Nur77 was also blocked by A-CREB, suggesting that MSKs control Nur77 transcription by phosphorylating CREB bound to the two AP-1-like elements. Consistent with the decrease in Nur77 mRNA levels in the MSK1/2-knockout cells, it was also found that MSKs were required for the induction of Nur77 protein by PMA and TNF. MSKs were also found to be required for the transcription of two genes related to Nur77, Nurr1 and Nor1, which were also transcribed in a CREB- or ATF1 (activating transcription factor-1)-dependent manner. Downstream of anisomycin signalling, a second ERK-dependent pathway, independent of MSK and CREB, was also required for the transcription of Nurr1 and Nor1.


2005 ◽  
Vol 392 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Mercedes Pozuelo Rubio ◽  
David G. Campbell ◽  
Nicholas A. Morrice ◽  
Carol Mackintosh

PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding.


2000 ◽  
Vol 20 (11) ◽  
pp. 3887-3895 ◽  
Author(s):  
Elizabeth Bilsland-Marchesan ◽  
Joaquín Ariño ◽  
Haruo Saito ◽  
Per Sunnerhagen ◽  
Francesc Posas

ABSTRACT Exposure of yeast cells to increases in extracellular osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK). Activation of Hog1 MAPK results in induction of a set of osmoadaptive responses, which allow cells to survive in high-osmolarity environments. Little is known about how the MAPK activation results in induction of these responses, mainly because no direct substrates for Hog1 have been reported. We conducted a two-hybrid screening using Hog1 as a bait to identify substrates for the MAPK, and the Rck2 protein kinase was identified as an interactor for Hog1. Both two-hybrid analyses and coprecipitation assays demonstrated that Hog1 binds strongly to the C-terminal region of Rck2. Upon osmotic stress, Rck2 was phosphorylated in vivo in a Hog1-dependent manner. Furthermore, purified Hog1 was able to phosphorylate Rck2 when activated both in vivo and in vitro. Rck2 phosphorylation occurred specifically at Ser519, a residue located within the C-terminal putative autoinhibitory domain. Interestingly, phosphorylation at Ser519 by Hog1 resulted in an increase of Rck2 kinase activity. Overexpression of Rck2 partially suppressed the osmosensitive phenotype of hog1Δ and pbs2Δ cells, suggesting that Rck2 is acting downstream of Hog1. Consistently, growth arrest caused by hyperactivation of the Hog1 MAPK was abolished by deletion of the RCK2 gene. Furthermore, overexpression of a catalytically impaired (presumably dominant inhibitory) Rck2 kinase resulted in a decrease of osmotolerance in wild-type cells but not in hog1Δ cells. Taken together, our data suggest that Rck2 acts downstream of Hog1, controlling a subset of the responses induced by the MAPK upon osmotic stress.


2005 ◽  
Vol 25 (24) ◽  
pp. 10695-10710 ◽  
Author(s):  
Pradeep K. Pandey ◽  
T. S. Udayakumar ◽  
Xinjie Lin ◽  
Dipali Sharma ◽  
Paul S. Shapiro ◽  
...  

ABSTRACT The TRAP/Mediator coactivator complex serves as a molecular bridge between gene-specific activators and RNA polymerase II. TRAP220/Med1 is a key component of TRAP/Mediator that targets the complex to nuclear hormone receptors and other types of activators. We show here that human TRAP220/Med1 is a specific substrate for extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) family. We demonstrate that ERK phosphorylates TRAP220/Med1 in vivo at two specific sites: threonine 1032 and threonine 1457. Importantly, we found that ERK phosphorylation significantly increases the stability and half-life of TRAP220/Med1 in vivo and correlates with increased thyroid hormone receptor-dependent transcription. Furthermore, ERK phosphorylates TRAP220/Med1 in a cell cycle-dependent manner, resulting in peak levels of expression during the G2/M phase of the cell cycle. ERK phosphorylation of ectopic TRAP220/Med1 also triggered shuttling into the nucleolus, thus suggesting that ERK may regulate TRAP220/Med1 subnuclear localization. Finally, we observed that ERK phosphorylation of TRAP220/Med1 stimulates its intrinsic transcriptional coactivation activity. We propose that ERK-mediated phosphorylation is a regulatory mechanism that controls TRAP220/Med1 expression levels and modulates its functional activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Wagner ◽  
Yasmin A. Lyons ◽  
Jean H. Siedel ◽  
Robert Dood ◽  
Archana S. Nagaraja ◽  
...  

AbstractAngiosarcoma is an aggressive malignancy of endothelial cells that carries a high mortality rate. Cytotoxic chemotherapy can elicit clinical responses, but the duration of response is limited. Sequencing reveals multiple mutations in angiogenesis pathways in angiosarcomas, particularly in vascular endothelial growth factor (VEGFR) and mitogen-activated protein kinase (MAPK) signaling. We aimed to determine the biological relevance of these pathways in angiosarcoma. Tissue microarray consisting of clinical formalin-fixed paraffin embedded tissue archival samples were stained for phospho- extracellular signal-regulated kinase (p-ERK) with immunohistochemistry. Angiosarcoma cell lines were treated with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, pan-VEGFR inhibitor cediranib, or combined trametinib and cediranib and viability was assessed. Reverse phase protein array (RPPA) was performed to assess multiple oncogenic protein pathways. SVR angiosarcoma cells were grown in vivo and gene expression effects of treatment were assessed with whole exome RNA sequencing. MAPK signaling was found active in over half of clinical angiosarcoma samples. Inhibition of MAPK signaling with the MEK inhibitor trametinib decreased the viability of angiosarcoma cells. Combined inhibition of the VEGF and MAPK pathways with cediranib and trametinib had an additive effect in in vitro models, and a combinatorial effect in an in vivo model. Combined treatment led to smaller tumors than treatment with either agent alone. RNA-seq demonstrated distinct expression signatures between the trametinib treated tumors and those treated with both trametinib and cediranib. These results indicate a clinical study of combined VEGFR and MEK inhibition in angiosarcoma is warranted.


1996 ◽  
Vol 16 (11) ◽  
pp. 5955-5963 ◽  
Author(s):  
S Krautwald ◽  
D Büscher ◽  
V Kummer ◽  
S Buder ◽  
M Baccarini

Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways.


2000 ◽  
Vol 11 (9) ◽  
pp. 2863-2872 ◽  
Author(s):  
Joe W. Ramos ◽  
Paul E. Hughes ◽  
Mark W. Renshaw ◽  
Martin A. Schwartz ◽  
Etienne Formstecher ◽  
...  

PEA-15 is a small, death effector-domain (DED)–containing protein that was recently demonstrated to inhibit tumor necrosis factor-α–induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5′-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.


Sign in / Sign up

Export Citation Format

Share Document