scholarly journals Retinoic acid induces transforming growth factor-beta 2 in cultured keratinocytes and mouse epidermis.

1989 ◽  
Vol 1 (1) ◽  
pp. 87-97 ◽  
Author(s):  
A B Glick ◽  
K C Flanders ◽  
D Danielpour ◽  
S H Yuspa ◽  
M B Sporn

We have studied the functional interaction between retinoic acid and transforming growth factor-beta (TGF-beta), using the mouse epidermis as a model system. Treatment with retinoic acid increases expression of TGF-beta 2 in cultured keratinocytes in vitro, as well as in the epidermis in vivo. This TGF-beta 2 is secreted in a biologically active form that can bind to surface receptors, in contrast to most other conditions in which TGF-beta is secreted in a latent form. Specific antibodies to TGF-beta 2 partially reverse the ability of retinoic acid to inhibit DNA synthesis in cultured keratinocytes. The regulation of TGF-beta 2 expression by retinoic acid may have important physiological and pharmacological roles in the maintenance of epidermal homeostasis.

1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 759-767 ◽  
Author(s):  
R.W. Pelton ◽  
S. Nomura ◽  
H.L. Moses ◽  
B.L. Hogan

We have studied the temporal and spatial expression of transforming growth factor beta 2 (TGF beta 2) RNA in mouse embryos from 10.5 days post coitum (p.c.) to 3 days post partum (p.p.) by in situ hybridization analysis. TGF beta 2 RNA is expressed in a variety of tissues including bone, cartilage, tendon, gut, blood vessels, skin and fetal placenta, and is in general found in the mesenchymal component of these tissues. The expression of TGF beta 2 RNA changes during development in a manner consistent with a role for the gene product in mediating mesenchymal-epithelial interactions.


1989 ◽  
Vol 9 (12) ◽  
pp. 5508-5515
Author(s):  
C C Bascom ◽  
J R Wolfshohl ◽  
R J Coffey ◽  
L Madisen ◽  
N R Webb ◽  
...  

Regulation of transforming growth factor beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 mRNAs in murine fibroblasts and keratinocytes by TGF beta 1 and TGF beta 2 was studied. In quiescent AKR-2B fibroblasts, in which TGF beta induces delayed stimulation of DNA synthesis, TGF beta 1 autoregulation of TGF beta 1 expression was observed as early as 1 h, with maximal induction (25-fold) after 6 to 12 h. Increased expression of TGF beta 1 mRNA was accompanied by increased TGF beta protein production into conditioned medium of AKR-2B cells. Neither TGF beta 2 nor TGF beta 3 mRNA, however, was significantly induced, but both were apparently down regulated at later times by TGF beta 1. Protein synthesis was not required for autoinduction of TGF beta 1 mRNA in AKR-2B cells. Nuclear run-on analyses and dactinomycin experiments indicated that autoregulation of TGF beta 1 expression is complex, involving both increased transcription and message stabilization. In contrast to TGF beta 1, TGF beta 2 treatment of quiescent AKR-2B cells increased expression of TGF beta 1, TGF beta 2, and TGF beta 3 mRNAs, but with different kinetics. Autoinduction of TGF beta 2 mRNA occurred rapidly with maximal induction at 1 to 3 h, enhanced TGF beta 3 mRNA levels were observed after 3 h, and increased expression of TGF beta 1 occurred later, with maximal mRNA levels obtained after 12 to 24 h. Nuclear run-on analyses indicated that TGF beta 2 regulation of TGF beta 2 and TGF beta 3 mRNA levels is transcriptional, while TGF beta 2 induction of TGF beta 1 expression most likely involves both transcriptional and posttranscriptional controls. In BALB/MK mouse keratinocytes, minimal autoinduction of TGF beta 1 occurred at only the 12- and 24-h time points and protein synthesis was required for this autoinduction. The results of this study provide an example in which TGF beta 1 and TGF beta 2 elicit different responses and demonstrate that expression of TGF beta 1, and TGF beta 3 are regulated differently. The physiological relevance of TGF beta 1 autoinduction in the context of wound healing is discussed.


1990 ◽  
Vol 38 (12) ◽  
pp. 1831-1840 ◽  
Author(s):  
G A Ksander ◽  
C O Gerhardt ◽  
J R Dasch ◽  
L R Ellingsworth

A polyclonal antibody (CL-B1/29) raised against a synthetic peptide with an amino acid sequence identical to the first 29 N-terminal residues of bovine bone-derived transforming growth factor-beta 2 (TGF-beta 2) was characterized and used for immunolocalization of TGF-beta 2 in adult mice. Reduced staining of immunoblots and tissue after absorption of the antiserum with the immunizing peptide or with TGF-beta 2 but not with purified TGF-beta 1 demonstrated that the reagent is specific for TGF-beta 2, with little or no crossreactivity with TGF-beta 1. The immunolocalization of TGF-beta 2 was investigated in formalin-fixed, paraffin-embedded cultured cells and murine tissue. Specimens pre-digested with testicular hyaluronidase demonstrated immunostaining predominantly of extracellular connective tissue matrix, whereas specimens pre-digested with pronase E demonstrated primarily cytoplasmic staining. Immunoreactivity was widely distributed in connective tissue, muscle, adsorptive and secretory epithelia, especially of endocrine tissue, and neural tissue of adult mice.


1992 ◽  
Vol 117 (3) ◽  
pp. 679-685 ◽  
Author(s):  
A König ◽  
L Bruckner-Tuderman

Collagen VII, the major component of cutaneous anchoring fibrils is expressed at a low level by normal human keratinocytes and fibroblasts in vitro. In cocultures of these two cell types, signals from fibroblasts enhance expression of collagen VII by keratinocytes and vice versa. In this study, the effects of a possible mediator of such a stimulation, transforming growth factor-beta (TGF-beta), were investigated. Its effect on the expression and deposition of the highly insoluble collagen VII was assessed in a semiquantitative manner by a newly developed enzyme-linked immunoassay which is based on immunoblotting. In keratinocyte monocultures, 0.5-20 ng/ml of TGF-beta 2 induced a dose-dependent stimulation of collagen VII expression as measured per microgram of DNA. The maximal enhancement was about sevenfold compared to controls. The effect of TGF-beta 2 was observed already after 12 h, with a steady increase at least up to 3 d. As previous studies have implicated, untreated cocultures of keratinocytes and fibroblasts exhibited a higher basic level of collagen VII expression, which could be further stimulated about twofold by TGF-beta 2. Fibroblasts alone synthesized very minor quantities of collagen VII and could be only weakly stimulated by TGF-beta 2. This growth factor seems a specific enhancer of collagen VII since the expression of laminin, collagen IV, as well as total protein was increased to a much lesser extent. Our data suggest that TGF-beta may be an important mediator of epithelial-mesenchymal interactions and may regulate the synthesis of the anchoring fibrils at the skin basement membrane zone.


1990 ◽  
Vol 110 (6) ◽  
pp. 2195-2207 ◽  
Author(s):  
M E Joyce ◽  
A B Roberts ◽  
M B Sporn ◽  
M E Bolander

We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.


1989 ◽  
Vol 109 (1) ◽  
pp. 441-448 ◽  
Author(s):  
T A McCaffrey ◽  
D J Falcone ◽  
C F Brayton ◽  
L A Agarwal ◽  
F G Welt ◽  
...  

The control of smooth muscle cell (SMC) proliferation is determined by the combined actions of mitogens, such as platelet-derived growth factor, and the opposing action of growth inhibitory agents, such as heparin and transforming growth factor-beta (TGF-beta). The present studies identify an interaction between heparin and TGF-beta in which heparin potentiates the biological action of TGF-beta. Using a neutralizing antibody to TGF-beta, we observed that the short term antiproliferative effect of heparin depended upon the presence of biologically active TGF-beta. This effect was observed in rat and bovine aortic SMC and in CCL64 cells, but not in human saphenous vein SMC. Binding studies demonstrated that the addition of heparin (100 micrograms/ml) to medium containing 10% plasma-derived serum resulted in a 45% increase in the specific binding of 125I-TGF-beta to cells. Likewise, heparin induced a twofold increase in the growth inhibitory action of TGF-beta at concentrations of TGF-beta near its apparent dissociation constant. Using 125I-labeled TGF-beta, we demonstrated that TGF-beta complexes with the plasma component alpha 2-macroglobulin, but not with fibronectin. Heparin increases the electrophoretic mobility of TGF-beta apparently by freeing TGF-beta from its complex with alpha 2-macroglobulin. Dextran sulfate, another highly charged antiproliferative molecule, but not chondroitin sulfate or dermatan sulfate, similarly modified TGF-beta's mobility. Relatively high, antiproliferative concentrations of heparin (1-100 micrograms/ml) were required to dissociate the TGF-beta/alpha 2-macroglobulin complex. Thus, it appears that the antiproliferative effect of heparin may be partially attributed to its ability to potentiate the biological activity of TGF-beta by dissociating it from alpha 2-macroglobulin, which normally renders it inactive. We suggest that heparin-like agents may be important regulators of TGF-beta's biological activity.


1989 ◽  
Vol 9 (12) ◽  
pp. 5508-5515 ◽  
Author(s):  
C C Bascom ◽  
J R Wolfshohl ◽  
R J Coffey ◽  
L Madisen ◽  
N R Webb ◽  
...  

Regulation of transforming growth factor beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 mRNAs in murine fibroblasts and keratinocytes by TGF beta 1 and TGF beta 2 was studied. In quiescent AKR-2B fibroblasts, in which TGF beta induces delayed stimulation of DNA synthesis, TGF beta 1 autoregulation of TGF beta 1 expression was observed as early as 1 h, with maximal induction (25-fold) after 6 to 12 h. Increased expression of TGF beta 1 mRNA was accompanied by increased TGF beta protein production into conditioned medium of AKR-2B cells. Neither TGF beta 2 nor TGF beta 3 mRNA, however, was significantly induced, but both were apparently down regulated at later times by TGF beta 1. Protein synthesis was not required for autoinduction of TGF beta 1 mRNA in AKR-2B cells. Nuclear run-on analyses and dactinomycin experiments indicated that autoregulation of TGF beta 1 expression is complex, involving both increased transcription and message stabilization. In contrast to TGF beta 1, TGF beta 2 treatment of quiescent AKR-2B cells increased expression of TGF beta 1, TGF beta 2, and TGF beta 3 mRNAs, but with different kinetics. Autoinduction of TGF beta 2 mRNA occurred rapidly with maximal induction at 1 to 3 h, enhanced TGF beta 3 mRNA levels were observed after 3 h, and increased expression of TGF beta 1 occurred later, with maximal mRNA levels obtained after 12 to 24 h. Nuclear run-on analyses indicated that TGF beta 2 regulation of TGF beta 2 and TGF beta 3 mRNA levels is transcriptional, while TGF beta 2 induction of TGF beta 1 expression most likely involves both transcriptional and posttranscriptional controls. In BALB/MK mouse keratinocytes, minimal autoinduction of TGF beta 1 occurred at only the 12- and 24-h time points and protein synthesis was required for this autoinduction. The results of this study provide an example in which TGF beta 1 and TGF beta 2 elicit different responses and demonstrate that expression of TGF beta 1, and TGF beta 3 are regulated differently. The physiological relevance of TGF beta 1 autoinduction in the context of wound healing is discussed.


Sign in / Sign up

Export Citation Format

Share Document