intramembranous bone
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 0)

Author(s):  
Kevin Hoffseth ◽  
Emily Busse ◽  
Josue Jaramillo ◽  
Jennifer Simkin ◽  
Michelle Lacey ◽  
...  

Mouse digit amputation provides a useful model of bone growth after injury, in that the injury promotes intramembranous bone formation in an adult animal. The digit tip is composed of skin, nerves, blood vessels, bones, and tendons, all of which regenerate after digit tip amputation, making it a powerful model for multi-tissue regeneration. Bone integrity relies upon a balanced remodeling between bone resorption and formation, which, when disrupted, results in changes to bone architecture and biomechanics, particularly during aging. In this study, we used recently developed techniques to evaluate bone patterning differences between young and aged regenerated bone. This analysis suggests that aged mice have altered trabecular spacing and patterning and increased mineral density of the regenerated bone. To further characterize the biomechanics of regenerated bone, we measured elasticity using a micro-computed tomography image-processing method combined with nanoindentation. This analysis suggests that the regenerated bone demonstrates decreased elasticity compared with the uninjured bone, but there is no significant difference in elasticity between aged and young regenerated bone. These data highlight distinct architectural and biomechanical differences in regenerated bone in both young and aged mice and provide a new analysis tool for the digit amputation model to aid in evaluating the outcomes for potential therapeutic treatments to promote regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramez H. Mahmoud ◽  
Claudia C. Biguetti ◽  
Gustavo B. Simionato ◽  
Isabela C. Custódio ◽  
Raquel B. P. Silva ◽  
...  

AbstractThis study investigated the role 5-lypoxigenase (5-LO) on alveolar socket healing in aged female mice treated with zoledronic acid (ZL). Forty 129/Sv female mice (64–68 weeks old), 20 wild type (WT) and 20 5-LO knockout (5LOKO) were equally distributed according to ZL treatment: WT Control, WT ZL, 5LOKO Control, and 5LOKO ZL. ZL groups were treated with an intraperitoneal injection of 250 µg/Kg of ZL, while controls were treated with saline. Treatments were administered once a week, starting four weeks before surgery for tooth extraction and until 7 and 21 days post-surgery. Mice were euthanized for a comprehensive microscopic analysis (microCT, histomorphometry and immunohistochemistry). WT ZL mice presented intense inflammatory infiltrate (7 days), delayed bone formation (21 days), reduced collagenous matrix quality, and a deficiency in Runx-2 + , TRAP + , and macrophages as compared to controls. 5LOKO ZL animals presented decreased number of Runx-2 + cells in comparison to 5LOKO Control at 7 days, but no major changes in bone healing as compared to WT or 5LOKO mice at 21 days. The knockout of 5LO favored intramembranous bone healing in aged female mice, with a direct impact on inflammatory response and bone metabolism on the development of ONJ-like lesions.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Lee ◽  
L. H. Remark ◽  
A. M. Josephson ◽  
K. Leclerc ◽  
E. Muiños Lopez ◽  
...  

AbstractAdult bone regeneration is orchestrated by the precise actions of osteoprogenitor cells (OPCs). However, the mechanisms by which OPC proliferation and differentiation are linked and thereby regulated are yet to be defined. Here, we present evidence that during intramembranous bone formation OPC proliferation is controlled by Notch signaling, while differentiation is initiated by activation of canonical Wnt signaling. The temporospatial separation of Notch and Wnt signal activation during the early stages of bone regeneration suggests crosstalk between the two pathways. In vitro and in vivo manipulation of the two essential pathways demonstrate that Wnt activation leads to initiation of osteogenic differentiation and at the same time inhibits Notch signaling, which results in termination of the proliferative phase. Here, we establish canonical Wnt signaling as a key regulator that facilitates the crosstalk between OPC proliferation and differentiation during intramembranous, primary bone healing.


Author(s):  
Qian Liu ◽  
Mao Li ◽  
Shiyi Wang ◽  
Zhousheng Xiao ◽  
Yuanyuan Xiong ◽  
...  

With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx’s function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.


Endocrinology ◽  
2020 ◽  
Vol 161 (12) ◽  
Author(s):  
Yongmei Wang ◽  
Lin Ling ◽  
Faming Tian ◽  
Sun Hee Won Kim ◽  
Sunita Ho ◽  
...  

Abstract Ephrin B2 is critical for endochondral bone development. In this study, we investigated its role in fracture repair by deleting ephrin B2 in type II collagen (Col.2) expressing cells. We used a nonstable tibia fracture model to evaluate fracture repair at 3 sites: intramembranous bone formation, endochondral bone formation, and intramedullary bone formation. We observed that during fracture repair, deletion of ephrin B2 impaired periosteal stem cell activation, inhibited their proliferation, decreased their survival, and blocked their differentiation into osteoblasts and chondrocytes. In addition, deletion of ephrin B2 decreased vascular endothelial growth factor production as well as vascular invasion into the fracture site. These changes led to reduced cartilage to bone conversion in the callus with decreased new bone formation, resulting in impaired fracture repair. Our data indicate that ephrin B2 in Col2-expressing cells is a critical regulator of fracture repair, pointing to a new and potentially targetable mechanism to enhance fracture repair.


2019 ◽  
Vol 37 (3) ◽  
pp. 22-23
Author(s):  
Matthew Stewart

Bone is one of the few tissues capable of authentic regenerative repair. However, despite advances in surgical technique, orthopaedic hardware and our understanding of fracture biology, inadequate bone repair remains a major concern in both veterinary and human medicine. Cell-based technologies provide opportunities to utilize the osteogenic capacities of Mesenchymal Stem Cells (MSC) to augment bone repair. Much of the research on MSC biology has focused on cells derived from the bone marrow/endosteal compartment; however, osteoprogenitor cells (OPC) also reside in the periosteum. Periosteum develops as a fibro-cellular envelope surrounding developing skeletal elements. The inner, or cambium layer of periosteum, includes committed OPCs directly adjacent the bone surface, and a distinct sub-population of progenitors within the periosteal mid-substance that retain both chondrogenic and osteogenic capacities. During skeletogenesis, periosteal OPCs are responsible for appositional intramembranous bone formation that increases the radial diameter of long bones. Of critical importance, periosteal stem cells are the predominant cell population responsible for generating the cartilaginous or ‘soft’ callus that provides intermediate stabilization and a scaffold for subsequent callus ossification by endochondral ossification; the primary mechanism of bone repair. In recent experiments using isolates from ‘donor-matched’ periosteum and bone marrow, we have found that the basal osteogenic capacity of equine OPCs is considerably less than that of bone marrow-derived MSCs. Periosteal OPCs require exogenous Bone Morphogenetic Protein (BMP) for robust osteogenesis, a finding consistent with the clinical responses of bone to recombinant BMP protein. Perhaps more surprising, the osteogenic capacity of adult (2-10 years of age) OPCs is comparable to those of young foals’, although the cell yield is considerably greater from foal specimens. In light of the vital importance of callus formation for successful fracture healing of most, further research on the biology and clinical manipulation of periosteal OPCs is highly warranted.


Author(s):  
Debnath S ◽  
Yallowitz AR ◽  
McCormick J ◽  
Lalani S ◽  
Zhang T ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document