scholarly journals High-Affinity Binding Of The AP-1 Adaptor Complex to Trans-Golgi Network Membranes Devoid Of Mannose 6-Phosphate Receptors

1999 ◽  
Vol 10 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Yunxiang Zhu ◽  
Linton M. Traub ◽  
Stuart Kornfeld

The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPγS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1·GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF·GTP hydrolysis.

2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


2022 ◽  
Author(s):  
Shan Qi ◽  
Javier Mota ◽  
Siu-Hong Chan ◽  
Johanna Villarreal ◽  
Nan Dai ◽  
...  

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


1980 ◽  
Vol 151 (4) ◽  
pp. 984-989 ◽  
Author(s):  
V Schirrmacher ◽  
R Cheingsong-Popov ◽  
H Arnheiter

Murine hepatocytes, isolated by an in situ collagenase-perfusion technique and cultured in Petri dishes, were shown to form rosettes with liver-metastasizing syngeneic tumor cells. Pretreatment of the tumor cells with neuraminidase generally increased the binding, whereas pretreatment of the liver cells with neuraminidase abolished the binding completely. The tumor-cell binding may be mediated by the previously described lectin-like receptor of hepatocytes that also was sensitive to neuraminidase treatment and that bound desialylated cells better than normal cells. Anti-H-2 sera could efficiently inhibit the rosette formation of metastatic tumor cells with the hepatocytes, which points to a possible role of H-2 molecules in this interaction of neoplastic and normal cells.


1989 ◽  
Vol 256 (5) ◽  
pp. F909-F915 ◽  
Author(s):  
D. C. Manning ◽  
S. H. Snyder

We have localized high affinity [3H]bradykinin receptor binding sites by in vitro autoradiography in kidney, ureter, and bladder of the guinea pig. The peptide pharmacology of the binding sites corresponds to that of high affinity physiological bradykinin receptors previously described (Manning, D. C., R. Vavrek, J. M. Stewart, and S. H. Snyder. J. Pharmacol. Exp. Ther. 237:504-512, 1986). In the kidney, receptors are concentrated in the medulla with negligible binding in the cortex. Medullary receptors are localized to the interstitium just beneath the basal membrane of collecting tubule cells and between tubules. In the ureter and bladder, receptors are confined to the lamina propria just beneath the epithelial layer. Localizations in the kidney may relate to the diuretic and natriuretic actions of bradykinin. Ureteral and bladder receptors may be associated with a role of bradykinin in pain and inflammation.


2003 ◽  
Vol 160 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Ian G. Mills ◽  
Gerrit J.K. Praefcke ◽  
Yvonne Vallis ◽  
Brian J. Peter ◽  
Lene E. Olesen ◽  
...  

EpsinR is a clathrin-coated vesicle (CCV) enriched 70-kD protein that binds to phosphatidylinositol-4-phosphate, clathrin, and the gamma appendage domain of the adaptor protein complex 1 (AP1). In cells, its distribution overlaps with the perinuclear pool of clathrin and AP1 adaptors. Overexpression disrupts the CCV-dependent trafficking of cathepsin D from the trans-Golgi network to lysosomes and the incorporation of mannose-6-phosphate receptors into CCVs. These biochemical and cell biological data point to a role for epsinR in AP1/clathrin budding events in the cell, just as epsin1 is involved in the budding of AP2 CCVs. Furthermore, we show that two gamma appendage domains can simultaneously bind to epsinR with affinities of 0.7 and 45 μM, respectively. Thus, potentially, two AP1 complexes can bind to one epsinR. This high affinity binding allowed us to identify a consensus binding motif of the form DFxDF, which we also find in γ-synergin and use to predict that an uncharacterized EF-hand–containing protein will be a new gamma binding partner.


2000 ◽  
Vol 113 (11) ◽  
pp. 1993-2002 ◽  
Author(s):  
H. Cao ◽  
H.M. Thompson ◽  
E.W. Krueger ◽  
M.A. McNiven

The large GTPase dynamin is a mechanoenzyme that participates in the scission of nascent vesicles from the plasma membrane. Recently, dynamin has been demonstrated to associate with the Golgi apparatus in mammalian cells by morphological and biochemical methods. Additional studies using a well characterized, cell-free assay have supported these findings by demonstrating a requirement for dynamin function in the formation of clathrin-coated, and non-clathrin-coated vesicles from the trans-Golgi network (TGN). In this study, we tested if dynamin participates in Golgi function in living cells through the expression of a dominant negative dynamin construct (K44A). Cells co-transfected to express this mutant dynamin and a GFP-tagged Golgi resident protein (TGN38) exhibit Golgi structures that are either compacted, vesiculated, or tubulated. Electron microscopy of these mutant cells revealed large numbers of Golgi stacks comprised of highly tubulated cisternae and an extraordinary number of coated vesicle buds. Cells expressing mutant dynamin and GFP-tagged VSVG demonstrated a marked retention (8- to 11-fold) of the nascent viral G-protein in the Golgi compared to control cells. These observations in living cells are consistent with previous morphological and in vitro studies demonstrating a role for dynamin in the formation of secretory vesicles from the TGN.


1996 ◽  
Vol 270 (1) ◽  
pp. R105-R110 ◽  
Author(s):  
K. Sasaki ◽  
M. Natsuhori ◽  
M. Shimoda ◽  
Y. Saima ◽  
E. Kokue

Stability and protein-binding properties of tetrahydrofolate (THF) in pig plasma were studied in vitro. THF in plasma was stable for more than 120 min when it existed in a bound form, whereas THF both in plasma ultrafiltrate and in plasma ultrafiltrate plus porcine albumin was degraded rapidly and disappeared soon after its addition. These results suggest that high-affinity folate-binding protein (HFBP) is related to the stability of THF. THF-protein binding kinetic analysis showed that porcine plasma had HFBP and low-affinity binding protein (albumin) for THF. Dissociation constant and maximal binding capacity of HFBP were calculated to be 0.4 and 70 nM, respectively, indicating that > 98% of endogenous plasma THF existed in bound form with HFBP. Porcine albumin was not essentially a protein that binds and protects endogenous THF from degradation. We conclude that most endogenous THF binds to HFBP and only the unbound form of THF is rapidly degraded in pig plasma. HFBP protects THF from degradation and allows THF to exist stably in pig plasma. In addition, HFBP may govern the species specificity of plasma folate distribution in pigs.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 752-758 ◽  
Author(s):  
L Trentin ◽  
R Zambello ◽  
C Agostini ◽  
F Siviero ◽  
F Adami ◽  
...  

Abstract Two receptors for tumor necrosis factor (TNF) with different molecular weight (75-Kd and 55-Kd) and binding affinity have been recently discovered. To investigate the distribution and the functional role of these receptors on leukemic B cells from hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia (B-CLL) patients, we evaluated: (1) the cytofluorimetric pattern of uncultured and cultured leukemic B cells incubated with utr-1 and htr-9 monoclonal antibodies (MoAbs), which specifically recognize the 75-Kd and 55-Kd TNF receptors (TNFR), respectively; (2) the effect of TNF-alpha and TNF-beta on leukemic B cells in an in vitro proliferation assay; (3) the role of anti-TNFR MoAbs on TNF-alpha and TNF-beta-driven B-cell growth; and (4) the proliferative effect of utr-1 and htr-9 MoAbs on in vitro cultured leukemic cells. Our study shows that the high affinity (75-Kd) but not the low affinity (55-Kd) TNFR molecules are expressed on freshly isolated leukemic B cells recovered from HCL and B-CLL patients. The expression of these receptors was neither upregulated nor downregulated by different stimuli, including TNF-alpha, TNF-beta, B-cell growth factor, and interleukin-2. TNF-alpha efficiently triggers the proliferation of HC and, to a lesser extent, the growth of B-CLL cells. TNF-beta was also able to transduce the proliferative signal in HCL, but not in B-CLL patients. TNF-alpha- and TNF-beta-driven B-cell proliferation was inhibited by the preincubation of leukemic B cells with utr-1 but not htr-9 MoAb. Moreover, anti-75-Kd, but not anti-55-Kd TNFR MoAb, was able to trigger the proliferation of leukemic B cells, and in particular of HC. These results show that leukemic B cells from patients with HCL and B-CLL are equipped with a fully functional high affinity TNFR.


Sign in / Sign up

Export Citation Format

Share Document