Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin

2000 ◽  
Vol 113 (11) ◽  
pp. 1993-2002 ◽  
Author(s):  
H. Cao ◽  
H.M. Thompson ◽  
E.W. Krueger ◽  
M.A. McNiven

The large GTPase dynamin is a mechanoenzyme that participates in the scission of nascent vesicles from the plasma membrane. Recently, dynamin has been demonstrated to associate with the Golgi apparatus in mammalian cells by morphological and biochemical methods. Additional studies using a well characterized, cell-free assay have supported these findings by demonstrating a requirement for dynamin function in the formation of clathrin-coated, and non-clathrin-coated vesicles from the trans-Golgi network (TGN). In this study, we tested if dynamin participates in Golgi function in living cells through the expression of a dominant negative dynamin construct (K44A). Cells co-transfected to express this mutant dynamin and a GFP-tagged Golgi resident protein (TGN38) exhibit Golgi structures that are either compacted, vesiculated, or tubulated. Electron microscopy of these mutant cells revealed large numbers of Golgi stacks comprised of highly tubulated cisternae and an extraordinary number of coated vesicle buds. Cells expressing mutant dynamin and GFP-tagged VSVG demonstrated a marked retention (8- to 11-fold) of the nascent viral G-protein in the Golgi compared to control cells. These observations in living cells are consistent with previous morphological and in vitro studies demonstrating a role for dynamin in the formation of secretory vesicles from the TGN.

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Divyanshu Mahajan ◽  
Boon Kim Boh ◽  
Yan Zhou ◽  
Li Chen ◽  
Tobias Carl Cornvik ◽  
...  

Abstract Arl1 is a member of Arf family small GTPases that is essential for the organization and function of Golgi complex. Mon2/Ysl2, which shares significant homology with Sec7 family Arf guanine nucleotide exchange factors, was poorly characterized in mammalian cells. Here, we report the first in depth characterization of mammalian Mon2. We found that Mon2 localized to trans-Golgi network which was dependent on both its N and C termini. The depletion of Mon2 did not affect the Golgi localized or cellular active form of Arl1. Furthermore, our in vitro assay demonstrated that recombinant Mon2 did not promote guanine nucleotide exchange of Arl1. Therefore, our results suggest that Mon2 could be neither necessary nor sufficient for the guanine nucleotide exchange of Arl1. We demonstrated that Mon2 was involved in endosome-to-Golgi trafficking as its depletion accelerated the delivery of furin and CI-M6PR to Golgi after endocytosis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aloka B. Bandara ◽  
Joshua C. Drake ◽  
David A. Brown

Abstract Background Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. Results Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. Conclusions Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.


2019 ◽  
Vol 30 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Jie Li ◽  
Danming Tang ◽  
Stephen C. Ireland ◽  
Yanzhuang Wang

In mammalian cells, the Golgi reassembly stacking protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a cochaperone of Heat shock cognate 71-kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its cochaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.


Author(s):  
Hong-Liang Bao ◽  
Tatsuki Masuzawa ◽  
Takanori Oyoshi ◽  
Yan Xu

Abstract Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.


1999 ◽  
Vol 112 (6) ◽  
pp. 845-854 ◽  
Author(s):  
A.C. Valdez ◽  
J.P. Cabaniols ◽  
M.J. Brown ◽  
P.A. Roche

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.


2019 ◽  
Vol 116 (9) ◽  
pp. 3546-3555 ◽  
Author(s):  
Kimberli J. Kamer ◽  
Wei Jiang ◽  
Virendar K. Kaushik ◽  
Vamsi K. Mootha ◽  
Zenon Grabarek

The mitochondrial uniporter is a Ca2+-channel complex resident within the organelle’s inner membrane. In mammalian cells the uniporter’s activity is regulated by Ca2+ due to concerted action of MICU1 and MICU2, two paralogous, but functionally distinct, EF-hand Ca2+-binding proteins. Here we present the X-ray structure of the apo form of Mus musculus MICU2 at 2.5-Å resolution. The core structure of MICU2 is very similar to that of MICU1. It consists of two lobes, each containing one canonical Ca2+-binding EF-hand (EF1, EF4) and one structural EF-hand (EF2, EF3). Two molecules of MICU2 form a symmetrical dimer stabilized by highly conserved hydrophobic contacts between exposed residues of EF1 of one monomer and EF3 of another. Similar interactions stabilize MICU1 dimers, allowing exchange between homo- and heterodimers. The tight EF1–EF3 interface likely accounts for the structural and functional coupling between the Ca2+-binding sites in MICU1, MICU2, and their complex that leads to the previously reported Ca2+-binding cooperativity and dominant negative effect of mutation of the Ca2+-binding sites in either protein. The N- and C-terminal segments of the two proteins are distinctly different. In MICU2 the C-terminal helix is significantly longer than in MICU1, and it adopts a more rigid structure. MICU2’s C-terminal helix is dispensable in vitro for its interaction with MICU1 but required for MICU2’s function in cells. We propose that in the MICU1–MICU2 oligomeric complex the C-terminal helices of both proteins form a central semiautonomous assembly which contributes to the gating mechanism of the uniporter.


1997 ◽  
Vol 17 (12) ◽  
pp. 7362-7374 ◽  
Author(s):  
J A Diehl ◽  
C J Sherr

Cyclins contain two characteristic cyclin folds, each consisting of five alpha-helical bundles, which are connected to one another by a short linker peptide. The first repeat makes direct contact with cyclin-dependent kinase (CDK) subunits in assembled holoenzyme complexes, whereas the second does not contribute directly to the CDK interface. Although threonine 156 in mouse cyclin D1 is predicted to lie at the carboxyl terminus of the linker peptide that separates the two cyclin folds and is buried within the cyclin subunit, mutation of this residue to alanine has profound effects on the behavior of the derived cyclin D1-CDK4 complexes. CDK4 in complexes with mutant cyclin D1 (T156A or T156E but not T156S) is not phosphorylated by recombinant CDK-activating kinase (CAK) in vitro, fails to undergo activating T-loop phosphorylation in vivo, and remains catalytically inactive and unable to phosphorylate the retinoblastoma protein. Moreover, when it is ectopically overexpressed in mammalian cells, cyclin D1 (T156A) assembles with CDK4 in the cytoplasm but is not imported into the cell nucleus. CAK phosphorylation is not required for nuclear transport of cyclin D1-CDK4 complexes, because complexes containing wild-type cyclin D1 and a CDK4 (T172A) mutant lacking the CAK phosphorylation site are efficiently imported. In contrast, enforced overexpression of the CDK inhibitor p21Cip1 together with mutant cyclin D1 (T156A)-CDK4 complexes enhanced their nuclear localization. These results suggest that cyclin D1 (T156A or T156E) forms abortive complexes with CDK4 that prevent recognition by CAK and by other cellular factors that are required for their nuclear localization. These properties enable ectopically overexpressed cyclin D1 (T156A), or a more stable T156A/T286A double mutant that is resistant to ubiquitination, to compete with endogenous cyclin D1 in mammalian cells, thereby mobilizing CDK4 into cytoplasmic, catalytically inactive complexes and dominantly inhibiting the ability of transfected NIH 3T3 fibroblasts to enter S phase.


2017 ◽  
Vol 45 (2) ◽  
pp. 555-562 ◽  
Author(s):  
James S. Italia ◽  
Yunan Zheng ◽  
Rachel E. Kelemen ◽  
Sarah B. Erickson ◽  
Partha S. Addy ◽  
...  

In the last two decades, unnatural amino acid (UAA) mutagenesis has emerged as a powerful new method to probe and engineer protein structure and function. This technology enables precise incorporation of a rapidly expanding repertoire of UAAs into predefined sites of a target protein expressed in living cells. Owing to the small footprint of these genetically encoded UAAs and the large variety of enabling functionalities they offer, this technology has tremendous potential for deciphering the delicate and complex biology of the mammalian cells. Over the last few years, exciting progress has been made toward expanding the toolbox of genetically encoded UAAs in mammalian cells, improving the efficiency of their incorporation and developing innovative applications. Here, we provide our perspective on these recent developments and highlight the current challenges that must be overcome to realize the full potential of this technology.


1999 ◽  
Vol 10 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Yunxiang Zhu ◽  
Linton M. Traub ◽  
Stuart Kornfeld

The GTP-binding protein ADP-ribosylation factor (ARF) initiates clathrin-coat assembly at the trans-Goli network (TGN) by generating high-affinity membrane-binding sites for the AP-1 adaptor complex. Both transmembrane proteins, which are sorted into the assembling coated bud, and novel docking proteins have been suggested to be partners with GTP-bound ARF in generating the AP-1-docking sites. The best characterized, and probably the major transmembrane molecules sorted into the clathrin-coated vesicles that form on the TGN, are the mannose 6-phosphate receptors (MPRs). Here, we have examined the role of the MPRs in the AP-1 recruitment process by comparing fibroblasts derived from embryos of either normal or MPR-negative animals. Despite major alterations to the lysosome compartment in the MPR-deficient cells, the steady-state distribution of AP-1 at the TGN is comparable to that of normal cells. Golgi-enriched membranes prepared from the receptor-negative cells also display an apparently normal capacity to recruit AP-1 in vitro in the presence of ARF and either GTP or GTPγS. The AP-1 adaptor is recruited specifically onto the TGN and not onto the numerous abnormal membrane elements that accumulate within the MPR-negative fibroblasts. AP-1 bound to TGN membranes from either normal or MPR-negative fibroblasts is fully resistant to chemical extraction with 1 M Tris-HCl, pH 7, indicating that the adaptor binds to both membrane types with high affinity. The only difference we do note between the Golgi prepared from the MPR-deficient cells and the normal cells is that AP-1 recruited onto the receptor-lacking membranes in the presence of ARF1·GTP is consistently more resistant to extraction with Tris. Because sensitivity to Tris extraction correlates well with nucleotide hydrolysis, this finding might suggest a possible link between MPR sorting and ARF GAP regulation. We conclude that the MPRs are not essential determinants in the initial steps of AP-1 binding to the TGN but, instead, they may play a regulatory role in clathrin-coated vesicle formation by affecting ARF·GTP hydrolysis.


2007 ◽  
Vol 177 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Shmuel Tuvia ◽  
Daniel Taglicht ◽  
Omri Erez ◽  
Iris Alroy ◽  
Iris Alchanati ◽  
...  

The ubiquitin (Ub) domain protein Herp plays a crucial role in the maintenance of calcium homeostasis during endoplasmic reticulum (ER) stress. We now show that Herp is a substrate as well as an activator of the E3 Ub ligase POSH. Herp-mediated POSH activation requires the Ubl domain and exclusively promotes lysine-63–linked polyubiquitination. Confocal microscopy demonstrates that Herp resides mostly in the trans-Golgi network, but, shortly after calcium perturbation by thapsigargin (Tpg), it appears mainly in the ER. Substitution of all lysine residues within the Ubl domain abolishes lysine-63–linked polyubiquitination of Herp in vitro and calcium-induced Herp relocalization that is also abrogated by the overexpression of a dominant-negative POSHV14A. A correlation exists between the kinetics of Tpg-induced Herp relocalization and POSH-dependent polyubiquitination. Finally, the overexpression of POSH attenuates, whereas the inhibition of POSH by the expression of POSHV14A or by RNA interference enhances Tpg-induced calcium burst. Altogether, these results establish a critical role for POSH-mediated ubiquitination in the maintenance of calcium homeostasis through the spatial control of Herp.


Sign in / Sign up

Export Citation Format

Share Document