scholarly journals Radixin Is Involved in Lamellipodial Stability during Nerve Growth Cone Motility

1999 ◽  
Vol 10 (5) ◽  
pp. 1511-1520 ◽  
Author(s):  
Leslie Castelo ◽  
Daniel G. Jay

Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility.

1992 ◽  
Vol 119 (5) ◽  
pp. 1219-1243 ◽  
Author(s):  
A K Lewis ◽  
P C Bridgman

The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.


1990 ◽  
Vol 111 (5) ◽  
pp. 1959-1970 ◽  
Author(s):  
W T Matten ◽  
M Aubry ◽  
J West ◽  
P F Maness

We show here that tubulin is the major in vivo substrate of the tyrosine-specific protein kinase pp60c-src in nerve growth cone membranes. Phosphotyrosine antibodies were used to demonstrate phosphotyrosyl residues in a subpopulation of alpha- and beta-tubulin that was highly enriched in a subcellular fraction of growth cone membranes from fetal rat brain. The presence of phosphotyrosine-modified isoforms of alpha- and beta-tubulin in vivo was confirmed by 32p labeling of rat cortical neurons in culture. Tubulin in growth cone membranes was phosphorylated at tyrosine in endogenous membrane phosphorylation reactions (0.068 mol phosphotyrosine/mol alpha-tubulin and 0.045 mol phosphotyrosine/mol beta-tubulin), and phosphorylation was specifically inhibited by antibodies directed against pp60c-src, which is localized in the growth cone membranes. pp60c-src was capable of directly phosphorylating tubulin as shown in immune complex kinase assays with purified brain tubulin. Phosphopeptide mapping revealed a limited number of sites of tyrosine phosphorylation in alpha- and beta-tubulin, with similar phosphopeptides observed in vivo and in vitro. These results reveal a novel posttranslational modification of tubulin that could regulate microtubule dynamics at the growth cone.


1991 ◽  
Vol 115 (2) ◽  
pp. 381-395 ◽  
Author(s):  
J H Sabry ◽  
T P O'Connor ◽  
L Evans ◽  
A Toroian-Raymond ◽  
M Kirschner ◽  
...  

The growth of an axon toward its target results from the reorganization of the cytoskeleton in response to environmental guidance cues. Recently developed imaging technology makes it possible to address the effect of such cues on the neural cytoskeleton directly. Although high resolution studies can be carried out on neurons in vitro, these circumstances do not recreate the complexity of the natural environment. We report here on the arrangement and dynamics of microtubules in live neurons pathfinding in response to natural guidance cues in situ using the embryonic grasshopper limb fillet preparation. A rich microtubule network was present within the body of the growth cone and normally extended into the distal growth cone margin. Complex microtubule loops often formed transiently within the growth cone. Branches both with and without microtubules were regularly observed. Microtubules did not extend into filopodia. During growth cone steering events in response to identified guidance cues, microtubule behaviour could be monitored. In turns towards guidepost cells, microtubules selectively invaded branches derived from filopodia that had contacted the guidepost cell. At limb segment boundaries, microtubules displayed a variety of behaviors, including selective branch invasion, and also invasion of multiple branches followed by selective retention in branches oriented in the correct direction. Microtubule invasion of multiple branches also was seen in growth cones migrating on intrasegmental epithelium. Both selective invasion and selective retention generate asymmetrical microtubule arrangements within the growth cone, and may play a key role in growth cone steering events.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Bhairab N Singh ◽  
Naoyuki Tahara ◽  
Yasuhiko Kawakami ◽  
Naoko Koyano-Nakagawa ◽  
Wuming Gong ◽  
...  

Remodeling of the pre-existing primitive vasculature is necessary for the formation of a complex branched vascular architecture. However, the factors that modulate these processes are incompletely defined. Previously, we defined the role of microRNAs (miRNAs) in endothelial specification. In the present study, we further examined the Etv2-Cre mediated ablation of Dicer L/L and characterized the perturbed vascular patterning in the embryo proper and yolk-sac. We mechanistically defined an important role for miR-130a , an Etv2 downstream target, in the mediation of vascular patterning and angiogenesis in vitro and in vivo . Inducible overexpression of miR-130a resulted in robust induction of vascular sprouts and angiogenesis with increased uptake of acetylated-LDL. Mechanistically, miR-130a directly regulates Jarid2 expression by binding to its 3’-UTR region. CRISPR/Cas9 mediated knockout of miR-130a showed increased levels of Jarid2 in the ES/EB system. Further, the levels of Jarid2 transcripts were increased in the Etv2-null embryos at E8.5. In the in vivo settings, injection of miR-130a specific morpholinos in zebrafish embryos resulted in perturbed vascular patterning with reduced levels of endothelial transcripts in the miR-130a morphants. qPCR and in situ hybridization techniques demonstrated increased expression of jarid2a in the miR-130a morphants in vivo . These findings demonstrate a critical role for Etv2-miR-130a-Jarid2 in vascular patterning both in vitro and in vivo .


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2736-2736
Author(s):  
Thea Kristin Våtsveen ◽  
Erming Tian ◽  
Stine H Kresse ◽  
Leonardo A Meza-zepeda ◽  
Ana Gabrea ◽  
...  

Abstract Despite heterogeneity of phenotypes, multiple myeloma (MM) can be classified into two major groups: hyperdiploid (HRD) tumors with 48–74 chromosomes, which typically have extra copies of at least four of the eight odd chromosomes 3, 5, 7, 9, 11, 15, 19, and 21; and non-hyperdiploid (NHRD) tumors, which usually have immunoglobulin heavy chain (IGH) translocations and <46 or >74 chromosomes. Human myeloma cell lines (HMCL) with a typical HRD genotype are lacking. The OH-2 HMCL was derived from extramedullary myeloma, and retains the same HRD phenotype as the primary tumor, with extra copies of chromosomes 3, 7, 15, 19, and 21, as demonstrated by array comparative genomic hybridization. This provides a unique example of an HMCL and the corresponding primary tumor that share the same HRD phenotype. Also Spectral Karyotyping showed the same HRD phenotype. By fluorescence in situ hybridization it was shown that OH-2 does not have an IGH or Ig lambda light chain translocation. Instead, both the HMCL and the primary tumor have complex translocations involving chromosomes 2, 8, and 20. The translocation juxtaposes MAFB near MYC and the Ig kappa (IGK) enhancer. Both MYC and MAFB are highly expressed, as shown by microarray analysis, and are thought to be dysregulated by the IGK enhancer. Both OH-2 HMCL and the primary tumor cells express high levels of Cyclin D2, an expected consequence of the enhanced MAFB level. OH-2 has a phenotype similar to the 20% of HRD MM tumors that express increased levels of Cyclin D2 but not Cyclin D1 and could be a good in vitro model for studies of this subgroup of MM. OH-2 is dependent on medium containing human serum and growth-promoting cytokines like IL-6 or IL-21, reflecting the critical role of the microenvironment for growth of MM cells.


2012 ◽  
Vol 53 (13) ◽  
pp. 8118 ◽  
Author(s):  
Tyler Schwend ◽  
Ryan J. Deaton ◽  
Yuntao Zhang ◽  
Bruce Caterson ◽  
Gary W. Conrad

1985 ◽  
Vol 101 (3) ◽  
pp. 1153-1160 ◽  
Author(s):  
C Hyman ◽  
K H Pfenninger

The focus of this study is a quantitative biochemical analysis of the calcium-dependent interactions of calmodulin with a nerve growth cone preparation from fetal rat brain (Pfenninger, K. H., L. Ellis, M. P. Johnson, L. B. Freidman, and S. Somlo, 1983, Cell 35:573-584). The presence of calmodulin as an integral component of this preparation is demonstrated, and quantitative binding studies are presented. The binding of 125I-calmodulin to nerve growth cone material is shown to be highly specific, calcium dependent, and saturable at nanomolar calmodulin concentrations. Additionally, the growth cones' binding components appear to be membrane proteins. The individual molecular mass species of growth cone proteins displaying calcium-dependent calmodulin binding are also detailed and presented in comparison with those of synaptosomes. This analysis reveals differences between the calmodulin binding proteins of the growth cone preparation and the synaptosome fraction, suggesting the presence in growth cones of a specialized set of components which may be involved in regulatory mechanisms controlling neuritic sprouting.


2003 ◽  
Vol 84 (12) ◽  
pp. 3405-3416 ◽  
Author(s):  
Polly Fowler ◽  
Sofia Marques ◽  
J. Pedro Simas ◽  
Stacey Efstathiou

In vitro studies have established that the latency-associated nuclear antigen encoded by human Kaposi's sarcoma-associated herpesvirus and the related ORF73 gene product of herpesvirus saimiri interact with virus origins of replication to facilitate maintenance of episomal DNA. Such a function implies a critical role for ORF73 in the establishment and maintenance of latency in vivo. To determine the role of ORF73 in virus pathogenesis, the ORF73 gene product encoded by murine herpesvirus-68 (MHV-68) was disrupted by making an ORF73 deletion mutant, Δ73, and an independent ORF73 frameshift mutant, FS73. The effect of the mutations introduced in ORF73 on MHV-68 pathogenesis was analysed in vivo using a well-characterized murine model system. These studies have revealed that ORF73 is not required for efficient lytic replication either in vitro or in vivo. In contrast, a severe latency deficit is observed in splenocytes of animals infected with an ORF73 mutant, as assessed by infectious centre reactivation assay or by in situ hybridization detection of latent virus. Assessment of viral genome-positive cells in sorted splenocyte populations confirmed the absence of ORF73 mutant virus from splenic latency reservoirs, including germinal centre B cells. These data indicate a crucial role for ORF73 in the establishment of latency and for virus persistence in the host.


Sign in / Sign up

Export Citation Format

Share Document