scholarly journals Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity.

1992 ◽  
Vol 119 (5) ◽  
pp. 1219-1243 ◽  
Author(s):  
A K Lewis ◽  
P C Bridgman

The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.

1996 ◽  
Vol 109 (8) ◽  
pp. 2031-2040 ◽  
Author(s):  
J.F. Challacombe ◽  
D.M. Snow ◽  
P.C. Letourneau

The extracellular matrix through which growth cones navigate contains molecules, such as chondroitin sulfate proteoglycan, that can inhibit growth cone advance and induce branching and turning. Growth cone turning is accompanied by rearrangement of the cytoskeleton. To identify changes in the organization of actin filaments and microtubules that occur as growth cones turn, we used time-lapse phase contrast videomicroscopy to observe embryonic chick dorsal root ganglion neuronal growth cones at a substratum border between fibronectin and chondroitin sulfate proteoglycan, in the presence and absence of cytochalasin B. Growth cones were fixed and immunocytochemically labeled to identify actin filaments and dynamic and stable microtubules. Our results suggest that microtubules are rearranged within growth cones to accomplish turning to avoid chondroitin sulfate proteoglycan. Compared to growth cones migrating on fibronectin, turning growth cones were more narrow, and they contained dynamic microtubules that were closer to the leading edge and were more bundled. Cytochalasin B-treated growth cones sidestepped laterally along the border instead of turning, and in sidestepping growth cones, microtubules were not bundled and aligned. We conclude that actin filament bundles are required for microtubule reorientation and growth cone turning to avoid chondroitin sulfate proteoglycan.


1999 ◽  
Vol 112 (18) ◽  
pp. 3015-3027 ◽  
Author(s):  
C. Faivre-Sarrailh ◽  
J. Falk ◽  
E. Pollerberg ◽  
M. Schachner ◽  
G. Rougon

The neuronal adhesion glycoprotein F3 is a multifunctional molecule of the immunoglobulin superfamily that displays heterophilic binding activities. In the present study, NrCAM was identified as the functional receptor mediating the inhibitory effect of F3 on axonal elongation from cerebellar granule cells. F3Fc-conjugated microspheres binding to neuronal growth cones resulted from heterophilic interaction with NrCAM but not with L1. Time-lapse video-microscopy indicated that F3Fc beads bind at the leading edge and move retrogradely to reach the base of the growth cone within a lapse of 30–60 seconds. Such velocity (5.7 microm/minute) is consistent with a coupling between F3 receptors and the retrograde flow of actin filaments. When actin filaments were disrupted by cytochalasin B, the F3Fc beads remained immobile at the leading edge. The retrograde mobility appeared to be dependent on NrCAM clustering since it was induced upon binding with cross-linked but not dimeric F3Fc chimera. These data indicate that F3 may control growth cone motility by modulating the linkage of its receptor, NrCAM, to the cytoskeleton. They provide further insights into the mechanisms by which GPI-anchored adhesion molecules may exert an inhibitory effect on axonal elongation.


1999 ◽  
Vol 10 (5) ◽  
pp. 1511-1520 ◽  
Author(s):  
Leslie Castelo ◽  
Daniel G. Jay

Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility.


1981 ◽  
Vol 91 (3) ◽  
pp. 695-705 ◽  
Author(s):  
J V Small

The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X-100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed.


2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.


1999 ◽  
Vol 146 (5) ◽  
pp. 1097-1106 ◽  
Author(s):  
Aneil Mallavarapu ◽  
Tim Mitchison

The extension and retraction of filopodia in response to extracellular cues is thought to be an important initial step that determines the direction of growth cone advance. We sought to understand how the dynamic behavior of the actin cytoskeleton is regulated to produce extension or retraction. By observing the movement of fiduciary marks on actin filaments in growth cones of a neuroblastoma cell line, we found that filopodium extension and retraction are governed by a balance between the rate of actin cytoskeleton assembly at the tip and retrograde flow. Both assembly and flow rate can vary with time in a single filopodium and between filopodia in a single growth cone. Regulation of assembly rate is the dominant factor in controlling filopodia behavior in our system.


1996 ◽  
Vol 135 (5) ◽  
pp. 1291-1308 ◽  
Author(s):  
L G Tilney ◽  
P Connelly ◽  
S Smith ◽  
G M Guild

The actin bundles in Drosophila bristles run the length of the bristle cell and are accordingly 65 microns (microchaetes) or 400 microns (macrochaetes) in length, depending on the bristle type. Shortly after completion of bristle elongation in pupae, the actin bundles break down as the bristle surface becomes chitinized. The bundles break down in a bizarre way; it is as if each bundle is sawed transversely into pieces that average 3 microns in length. Disassembly of the actin filaments proceeds at the "sawed" surfaces. In all cases, the cuts in adjacent bundles appear in transverse register. From these images, we suspected that each actin bundle is made up of a series of shorter bundles or modules that are attached end-to-end. With fluorescent phalloidin staining and serial thin sections, we show that the modular design is present in nondegenerating bundles. Decoration of the actin filaments in adjacent bundles in the same bristle with subfragment 1 of myosin reveals that the actin filaments in every module have the same polarity. To study how modules form developmentally, we sectioned newly formed and elongating bristles. At the bristle tip are numerous tiny clusters of 6-10 filaments. These clusters become connected together more basally to form filament bundles that are poorly organized, initially, but with time become maximally cross-linked. Additional filaments are then added to the periphery of these organized bundle modules. All these observations make us aware of a new mechanism for the formation and elongation of actin filament bundles, one in which short bundles are assembled and attached end-to-end to other short bundles, as are the vertical girders between the floors of a skyscraper.


1997 ◽  
Vol 136 (2) ◽  
pp. 331-343 ◽  
Author(s):  
R. Dyche Mullins ◽  
Walter F. Stafford ◽  
Thomas D. Pollard

The Arp2/3 complex, first isolated from Acanthamoeba castellani by affinity chromatography on profilin, consists of seven polypeptides; two actinrelated proteins, Arp2 and Arp3; and five apparently novel proteins, p40, p35, p19, p18, and p14 (Machesky et al., 1994). The complex is homogeneous by hydrodynamic criteria with a Stokes' radius of 5.3 nm by gel filtration, sedimentation coefficient of 8.7 S, and molecular mass of 197 kD by analytical ultracentrifugation. The stoichiometry of the subunits is 1:1:1:1:1:1:1, indicating the purified complex contains one copy each of seven polypeptides. In electron micrographs, the complex has a bilobed or horseshoe shape with outer dimensions of ∼13 × 10 nm, and mathematical models of such a shape and size are consistent with the measured hydrodynamic properties. Chemical cross-linking with a battery of cross-linkers of different spacer arm lengths and chemical reactivities identify the following nearest neighbors within the complex: Arp2 and p40; Arp2 and p35; Arp3 and p35; Arp3 and either p18 or p19; and p19 and p14. By fluorescent antibody staining with anti-p40 and -p35, the complex is concentrated in the cortex of the ameba, especially in linear structures, possibly actin filament bundles, that lie perpendicular to the leading edge. Purified Arp2/3 complex binds actin filaments with a Kd of 2.3 μM and a stoichiometry of approximately one complex molecule per actin monomer. In electron micrographs of negatively stained samples, Arp2/3 complex decorates the sides of actin filaments. EDC/NHS cross-links actin to Arp3, p35, and a low molecular weight subunit, p19, p18, or p14. We propose structural and topological models for the Arp2/3 complex and suggest that affinity for actin filaments accounts for the localization of complex subunits to actinrich regions of Acanthamoeba.


1988 ◽  
Vol 107 (6) ◽  
pp. 2563-2574 ◽  
Author(s):  
L G Tilney ◽  
M S Tilney

By direct counts off scanning electron micrographs, we determined the number of stereocilia per hair cell of the chicken cochlea as a function of the position of the hair cell on the cochlea. Micrographs of thin cross sections of stereociliary bundles located at known positions on the cochlea were enlarged and the total number of actin filaments per stereocilium was counted and recorded. By comparing the counts of filament number with measurements of actin filament bundle width of the same stereocilium, we were able to relate actin filament bundle width to filament number with an error margin (r2) of 16%. Combining this data with data already published or in the process of publication from our laboratory on the length and width of stereocilia, we were able to calculate the total length of actin filaments present in stereociliary bundles of hair cells located at a variety of positions on the cochlea. We found that stereociliary bundles of hair cells contain 80,000-98,000 micron of actin filament, i.e., the concentration of actin is constant in all hair cells with a range of values that is less than our error in measurement and/or biological variation, the greatest variation being in relating the diameters of the stereocilia to filament number. We also calculated the membrane surface needed to cover the stereocilia of hair cells located throughout the cochlea. The values (172-192 micron 2) are also constant. The implications of our observation that the total amount of actin is constant even though the length, width, and number of stereocilia per hair cell vary are discussed.


Sign in / Sign up

Export Citation Format

Share Document