scholarly journals Alpha 2-macroglobulin restricts plasminogen activation to the surface of RC2A leukemia cells.

1991 ◽  
Vol 2 (12) ◽  
pp. 1057-1065 ◽  
Author(s):  
R W Stephens ◽  
H Tapiovaara ◽  
T Reisberg ◽  
J Bizik ◽  
A Vaheri

Human RC2A myelomonocytic leukemia cells are able to activate the prourokinase (pro-u-PA) they secrete so that active u-PA is present both in serum-free conditioned medium from these cells, as well as on the cell surface. When the cells are grown in serum-containing medium, no u-PA activity can be found in the medium but active u-PA is found bound to the cell surface where it can generate bound plasmin. This distribution of u-PA activity was shown to be, first, the net result of slow inactivation of free active u-PA by serum inhibitor(s) and simultaneous rapid uptake of u-PA onto the cell surface. Binding to cells was at least six times faster than inactivation by 10% serum. The principal serum inhibitor of u-PA was identified as alpha 2-macroglobulin (alpha 2M), and prior inactivation of u-PA by purified human alpha 2M was also shown to prevent uptake of u-PA activity onto cells. Second, although endogenous u-PA could form covalent complexes with purified alpha 2M in the culture medium of RC2A cells, covalent alpha 2M complexes were not formed by u-PA on the cell surface; the u-PA taken up in this compartment was protected against alpha 2M inhibition. u-PA anchored to plastic surfaces via monoclonal antibodies to the amino-terminal region of u-PA was also protected against alpha 2M, suggesting that the protection of cell surface u-PA results from a steric effect. These results provide evidence as to how the active u-PA produced by leukemia cells can contribute to proteolytic activity on their cell surface in the presence of serum inhibitors.

1988 ◽  
Vol 8 (10) ◽  
pp. 4234-4242
Author(s):  
B L Allen-Hoffmann ◽  
C L Crankshaw ◽  
D F Mosher

Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.


1988 ◽  
Vol 8 (10) ◽  
pp. 4234-4242 ◽  
Author(s):  
B L Allen-Hoffmann ◽  
C L Crankshaw ◽  
D F Mosher

Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.


1993 ◽  
Vol 268 (7) ◽  
pp. 5279-5284
Author(s):  
B.S. Weeks ◽  
K. Desai ◽  
P.M. Loewenstein ◽  
M.E. Klotman ◽  
P.E. Klotman ◽  
...  

1991 ◽  
Vol 266 (28) ◽  
pp. 18655-18659 ◽  
Author(s):  
P.F. Blackmore ◽  
J. Neulen ◽  
F. Lattanzio ◽  
S.J. Beebe

1994 ◽  
Vol 304 (1) ◽  
pp. 263-269 ◽  
Author(s):  
R V Ward ◽  
S J Atkinson ◽  
J J Reynolds ◽  
G Murphy

We report that the isolated C-terminal domain of progelatinase A is inhibitory to the activation of this proenzyme by primary skin fibroblast plasma membranes but is unable to inhibit organomercurial-induced self-cleavage and activation. Ligand binding studies demonstrate that fibroblasts stimulated with concanavalin A to activate progelatinase A have a significantly enhanced level of cell surface-associated progelatinase A. Tissue inhibitor of metalloproteinases-2 (TIMP-2), an effective inhibitor of membrane-mediated progelatinase A activation, is able to abolish the enhanced level of cell surface-associated progelatinase A that occurs following stimulation. TIMP-1, a poor inhibitor of membrane activation, is unable to inhibit the cell surface binding of progelatinase A. The enhancement in the binding of 125I-progelatinase A to fibroblasts following concanavalin A stimulation can be blocked by the inclusion of excess C-terminal gelatinase A but not by a truncated form of gelatinase A lacking the C-terminal domain. Scatchard analysis of the binding of 125I-progelatinase A to concanavalin A-stimulated fibroblasts has identified 950,000 gelatinase binding sites per cell with a Kd of 1.3 x 10(-8) M. Analysis of non-stimulated fibroblasts has identified 500,000 sites per cell with a Kd of 2.6 x 10(-8) M. We propose that membrane-mediated activation of progelatinase A involves binding of the proenzyme through its C-terminal domain to the cell surface and that TIMP-2 can inhibit activation by interaction with progelatinase A through the C-terminal domain, thus preventing binding of the proenzyme.


Sign in / Sign up

Export Citation Format

Share Document