scholarly journals A GM-colony-stimulating factor (CSF) activated ribonuclease system transregulates M-CSF receptor expression in the murine FDC-P1/MAC myeloid cell line.

1992 ◽  
Vol 3 (5) ◽  
pp. 535-544 ◽  
Author(s):  
B C Gliniak ◽  
L S Park ◽  
L R Rohrschneider

The murine myeloid precursor cell line FDC-P1/MAC simultaneously expresses receptors for multi-colony-stimulating factor (CSF), granulocyte-macrophage (GM)-CSF, and macrophage (M)-CSF. Growth of FDC-P1/MAC cells in either multi-CSF or GM-CSF results in the posttranscriptional suppression of M-CSF receptor (c-fms proto-oncogene) expression. We use the term transregulation to describe this control of receptor expression and have further characterized this regulatory process. The removal of FDC-P1/MAC cells from GM-CSF stimulation resulted in the re-expression of c-fms mRNA independent of M-CSF stimulation and new protein synthesis. Switching FDC-P1/MAC cells from growth in M-CSF to GM-CSF caused the selective degradation of c-fms mRNA within 6 h after factor switching. Blocking protein synthesis or gene transcription with metabolic inhibitors effectively prevented GM-CSF stimulated degradation of c-fms mRNA. These results suggest that the transregulation of c-fms transcripts by GM-CSF requires the transcriptional activation of a selective mRNA degradation factor. In vitro analysis, the use of cytoplasmic cell extracts, provided evidence that a ribonuclease is preferentially active in GM-CSF stimulated cells, although the specificity for mRNA degradation in vitro is broader than seen in vivo. Together, these data suggest that GM-CSF can dominantly transregulate the level of c-fms transcript through the transcriptional activation of a ribonuclease degradation system.

Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1301-1310
Author(s):  
KB Leslie ◽  
HJ Ziltener ◽  
JW Schrader

WEHI-274.3 is a cell line isolated from an in vivo-derived, murine myelomonocytic leukemia. Although the survival and growth of WEHI-274.3 cells in vitro is absolutely dependent on the addition of exogenous growth factors such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or colony-stimulating factor-1, when injected into syngeneic mice the cell line is tumorigenic. Sera from normal mice contain low levels of an activity that sustains survival of WEHI-274.3 but does not stimulate growth. In contrast, sera from mice bearing the WEHI-274.3 leukemia contained levels of CSF-1 and GM-CSF that stimulated the growth of WEHI-274.3 cells. Supernatants of cultures of WEHI-274.3 cells contained an activity that stimulated 3T3 fibroblasts to release an activity that stimulated the growth of the WEHI-274.3 cells. The 3T3-stimulatory activity released by the WEHI- 274.3 cells was neutralized completely with an antiserum specific for murine IL-1 alpha, but not with antiserum specific for IL-1 beta. Moreover, WEHI-274.3 cells both in vitro and in vivo contained high levels of IL-1 alpha and IL-1 beta mRNAs. The leukemia-stimulatory activity released by the 3T3 cells was neutralized by an antiserum specific for GM-CSF. We postulate that the IL-1 alpha constitutively released by the WEHI-274.3 cells stimulates the production of GM-CSF from host cells such as fibroblasts or endothelial cells. A similar paracrine mechanism of growth stimulation may occur in acute myeloid leukemias in humans.


Blood ◽  
1991 ◽  
Vol 78 (5) ◽  
pp. 1301-1310 ◽  
Author(s):  
KB Leslie ◽  
HJ Ziltener ◽  
JW Schrader

Abstract WEHI-274.3 is a cell line isolated from an in vivo-derived, murine myelomonocytic leukemia. Although the survival and growth of WEHI-274.3 cells in vitro is absolutely dependent on the addition of exogenous growth factors such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or colony-stimulating factor-1, when injected into syngeneic mice the cell line is tumorigenic. Sera from normal mice contain low levels of an activity that sustains survival of WEHI-274.3 but does not stimulate growth. In contrast, sera from mice bearing the WEHI-274.3 leukemia contained levels of CSF-1 and GM-CSF that stimulated the growth of WEHI-274.3 cells. Supernatants of cultures of WEHI-274.3 cells contained an activity that stimulated 3T3 fibroblasts to release an activity that stimulated the growth of the WEHI-274.3 cells. The 3T3-stimulatory activity released by the WEHI- 274.3 cells was neutralized completely with an antiserum specific for murine IL-1 alpha, but not with antiserum specific for IL-1 beta. Moreover, WEHI-274.3 cells both in vitro and in vivo contained high levels of IL-1 alpha and IL-1 beta mRNAs. The leukemia-stimulatory activity released by the 3T3 cells was neutralized by an antiserum specific for GM-CSF. We postulate that the IL-1 alpha constitutively released by the WEHI-274.3 cells stimulates the production of GM-CSF from host cells such as fibroblasts or endothelial cells. A similar paracrine mechanism of growth stimulation may occur in acute myeloid leukemias in humans.


1990 ◽  
Vol 10 (6) ◽  
pp. 2991-3002
Author(s):  
P van der Geer ◽  
T Hunter

The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.


2008 ◽  
Vol 295 (1) ◽  
pp. L114-L122 ◽  
Author(s):  
Megan N. Ballinger ◽  
Leah L. N. Hubbard ◽  
Tracy R. McMillan ◽  
Galen B. Toews ◽  
Marc Peters-Golden ◽  
...  

Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E2(PGE2) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. To determine whether AM overproduction of GM-CSF influenced immunosuppression post-BMT, we compared mice that received BMT from wild-type donors (control BMT) or mice that received BMT from GM-CSF−/− donors (GM-CSF−/− BMT) with untransplanted mice. GM-CSF−/− BMT mice were less susceptible to pneumonia with Pseudomonas aeruginosa compared with control BMT mice and showed antibacterial responses equal to or better than untransplanted mice. GM-CSF−/− BMT AMs displayed normal phagocytosis and a trend toward enhanced bacterial killing. Surprisingly, AMs from GM-CSF−/− BMT mice overproduced PGE2, but expression of the inhibitory EP2receptor was diminished. As a consequence of decreased EP2receptor expression, we found diminished accumulation of cAMP in response to PGE2stimulation in GM-CSF−/− BMT AMs compared with control BMT AMs. In addition, GM-CSF−/− BMT AMs retained cysteinyl leukotriene production and normal TNF-α response compared with AMs from control BMT mice. GM-CSF−/− BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF−/− recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1329-1332 ◽  
Author(s):  
DC Kaufman ◽  
MR Baer ◽  
XZ Gao ◽  
ZQ Wang ◽  
HD Preisler

Expression of the granulocyte-macrophage colony-stimulating factor (GM- CSF) gene in acute myelocytic leukemia (AML) was assayed by Northern blot analysis. GM-CSF messenger RNA (mRNA) was detected in the freshly obtained mononuclear cells of only one of 48 cases of AML, in contrast with recent reports that GM-CSF mRNA might be detected in half of the cases of AML when RNA is prepared from T-cell- and monocyte-depleted leukemic cells. We did find, however, that expression of the GM-CSF gene was detectable in five of ten cases after in vitro T-cell and monocyte depletion steps. Additional studies suggest that expression of GM-CSF in the bone marrow of the one positive case, rather than being autonomous, was under exogenous control, possibly by a paracrine factor secreted by marrow stromal cells. These studies emphasize the potential for altering in vivo patterns of gene expression by in vitro cell manipulation.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1912-1918 ◽  
Author(s):  
A Tobler ◽  
HP Marti ◽  
C Gimmi ◽  
AB Cachelin ◽  
S Saurer ◽  
...  

Abstract Tumor necrosis factor alpha (TNF alpha) stimulates granulocyte- macrophage colony-stimulating factor (GM-CSF) production in human fibroblasts and other mesenchymal cells. However, relatively little is known about agents that downregulate cytokine production in these cells. In the present report we show that dexamethasone (Dexa), a synthetic glucocorticoid, markedly reduced GM-CSF production in TNF alpha-stimulated fibroblasts at both the protein and the RNA levels. CSF activity, GM-CSF protein, and RNA levels, determined by an in vitro colony-forming assay in normal human bone marrow cells, by an enzyme immunoassay, and by Northern blotting assay, were reduced to greater than 90% of control values by Dexa (1 mumol/L). Similarly, 1,25- dihydroxyvitamin D3 [1,25(OH)2D3], a hormone with possible physiologic immunoregulatory significance, reduced GM-CSF expression in a concentration- and time-dependent manner. However, this repression was less pronounced than that of Dexa, and in part due to a decreased proliferative activity. In contrast, cyclosporine A (CsA), another immunosuppressive agent, did not alter GM-CSF expression in TNF alpha- stimulated fibroblasts. Our in vitro studies suggest that by inhibiting GM-CSF production in fibroblasts, glucocorticoids and possibly 1,25(OH)2D3, but not CsA, may attenuate TNF alpha-mediated inflammatory processes and influence the regulation of hematopoiesis.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3192-3199 ◽  
Author(s):  
T Egeland ◽  
R Steen ◽  
H Quarsten ◽  
G Gaudernack ◽  
YC Yang ◽  
...  

Abstract CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte- monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a “broad” myeloid profile, “broader” than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1543-1552 ◽  
Author(s):  
VF Quesniaux ◽  
S Wehrli ◽  
C Steiner ◽  
J Joergensen ◽  
HJ Schuurman ◽  
...  

Abstract The immunosuppressive drug rapamycin suppresses T-cell activation by impairing the T-cell response to lymphokines such as interleukin-2 (IL- 2) and interleukin-4 (IL-4). In addition, rapamycin blocks the proliferative response of cell lines to a variety of hematopoietic growth factors, including interleukin-3 (IL-3), interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage- colony stimulating factor (GM-CSF), and kit ligand (KL), suggesting that it should be a strong inhibitor of hematopoiesis. In this report, we studied the effects of rapamycin on different hematopoietic cell populations in vitro and in vivo. In vitro, rapamycin inhibited the proliferation of primary bone marrow cells induced by IL-3, GM-CSF, KL, or a complex mixture of factors present in cell-conditioned media. Rapamycin also inhibited the multiplication of colony-forming cells in suspension cultures containing IL-3 plus interleukin-1 (IL-1) or interleukin-11 (IL-11) plus KL. In vivo, treatment for 10 to 28 days with high doses of rapamycin (50 mg/kg/d, orally) had no effect on myelopoiesis in normal mice, as measured by bone marrow cellularity, proliferative capacity, and number of colony-forming progenitors. In contrast, the same treatment strongly suppressed the hematopoietic recovery normally seen 10 days after an injection of 5-fluorouracil (5- FU; 150 mg/kg, intravenously [i.v.]). Thus, rapamycin may be detrimental in myelocompromised individuals. In addition, the results suggest that the rapamycin-sensitive cytokine-driven pathways are essential for hematopoietic recovery after myelodepression, but not for steady-state hematopoiesis.


1987 ◽  
Vol 166 (5) ◽  
pp. 1436-1446 ◽  
Author(s):  
W Y Weiser ◽  
A Van Niel ◽  
S C Clark ◽  
J R David ◽  
H G Remold

Recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) obtained from cloned complementary Mo cell DNA and expressed in COS-1 cells activates cultured peripheral blood monocyte-derived macrophages in vitro to become cytotoxic for intracellular L. donovani. The antileishmanial effect of rGM-CSF, which can be completely neutralized by anti-rGM-CSF antiserum, is maximal after 36 h preincubation with the cultured macrophages, compared with that of rIFN-gamma, which reaches its maximum at 72 h of preincubation. The antileishmanial effect of GM-CSF as well as IFN-gamma is independent of detectable amounts of LPS and is not augmented by the addition of 10 or 50 ng/ml of LPS. Simultaneous administration of suboptimal doses of rGM-CSF and rIFN-gamma to monocyte-derived macrophages results in greater antileishmanial activity by these cells than administration of either lymphokine alone, although no enhancement of antileishmanial activity is observed when optimal doses of these two lymphokines are applied together.


Sign in / Sign up

Export Citation Format

Share Document