scholarly journals Quality Control in the Secretory Pathway: The Role of Calreticulin, Calnexin and BiP in the Retention of Glycoproteins with C-Terminal Truncations

1997 ◽  
Vol 8 (10) ◽  
pp. 1943-1954 ◽  
Author(s):  
Jian-Xin Zhang ◽  
Ineke Braakman ◽  
Kent E.S. Matlack ◽  
Ari Helenius

Unlike properly folded and assembled proteins, most misfolded and incompletely assembled proteins are retained in the endoplasmic reticulum of mammalian cells and degraded without transport to the Golgi complex. To analyze the mechanisms underlying this unique sorting process and its fidelity, the fate of C-terminally truncated fragments of influenza hemagglutinin was determined. An assortment of different fragments was generated by adding puromycin at low concentrations to influenza virus-infected tissue culture cells. Of the fragments generated, <2% was secreted, indicating that the system for detecting defects in newly synthesized proteins is quite stringent. The majority of secreted species corresponded to folding domains within the viral spike glycoprotein. The retained fragments acquired a partially folded structure with intrachain disulfide bonds and conformation-dependent antigenic epitopes. They associated with two lectin-like endoplasmic reticulum chaperones (calnexin and calreticulin) but not BiP/GRP78. Inhibition of the association with calnexin and calreticulin by the addition of castanospermine significantly increased fragment secretion. However, it also caused association with BiP/GRP78. These results indicated that the association with calnexin and calreticulin was involved in retaining the fragments. They also suggested that BiP/GRP78 could serve as a backup for calnexin and calreticulin in retaining the fragments. In summary, the results showed that the quality control system in the secretory pathway was efficient and sensitive to folding defects, and that it involved multiple interactions with endoplasmic reticulum chaperones.

2003 ◽  
Vol 14 (3) ◽  
pp. 1268-1278 ◽  
Author(s):  
Laurence Fayadat ◽  
Ron R. Kopito

To understand the relationship between conformational maturation and quality control–mediated proteolysis in the secretory pathway, we engineered the well-characterized degron from the α-subunit of the T-cell antigen receptor (TCRα) into the α-helical transmembrane domain of homotrimeric type I integral membrane protein, influenza hemagglutinin (HA). Although the membrane degron does not appear to interfere with acquisition of native secondary structure, as assessed by the formation of native intrachain disulfide bonds, only ∼50% of nascent mutant HA chains (HA++) become membrane-integrated and acquire complex N-linked glycans indicative of transit to a post-ER compartment. The remaining ∼50% of nascent HA++ chains fail to integrate into the lipid bilayer and are subject to proteasome-dependent degradation. Site-specific cleavage by extracellular trypsin and reactivity with conformation-specific monoclonal antibodies indicate that membrane-integrated HA++ molecules are able to mature to the plasma membrane with a conformation indistinguishable from that of HAwt. These apparently native HA++ molecules are, nevertheless, rapidly degraded by a process that is insensitive to proteasome inhibitors but blocked by lysosomotropic amines. These data suggest the existence in the secretory pathway of at least two sequential quality control checkpoints that recognize the same transmembrane degron, thereby ensuring the fidelity of protein deployment to the plasma membrane.


1991 ◽  
Vol 115 (1) ◽  
pp. 31-43 ◽  
Author(s):  
H Plutner ◽  
A D Cox ◽  
S Pind ◽  
R Khosravi-Far ◽  
J R Bourne ◽  
...  

We report an essential role for the ras-related small GTP-binding protein rab1b in vesicular transport in mammalian cells. mAbs detect rab1b in both the ER and Golgi compartments. Using an assay which reconstitutes transport between the ER and the cis-Golgi compartment, we find that rab1b is required during an initial step in export of protein from the ER. In addition, it is also required for transport of protein between successive cis- and medial-Golgi compartments. We suggest that rab1b may provide a common link between upstream and downstream components of the vesicular fission and fusion machinery functioning in early compartments of the secretory pathway.


2011 ◽  
Vol 22 (14) ◽  
pp. 2646-2658 ◽  
Author(s):  
Qiang Chen ◽  
Sujatha Jagannathan ◽  
David W. Reid ◽  
Tianli Zheng ◽  
Christopher V. Nicchitta

The mRNA transcriptome is currently thought to be partitioned between the cytosol and endoplasmic reticulum (ER) compartments by binary selection; mRNAs encoding cytosolic/nucleoplasmic proteins are translated on free ribosomes, and mRNAs encoding topogenic signal-bearing proteins are translated on ER-bound ribosomes, with ER localization being conferred by the signal-recognition particle pathway. In subgenomic and genomic analyses of subcellular mRNA partitioning, we report an overlapping subcellular distribution of cytosolic/nucleoplasmic and topogenic signal-encoding mRNAs, with mRNAs of both cohorts displaying noncanonical subcellular partitioning patterns. Unexpectedly, the topogenic signal-encoding mRNA transcriptome was observed to partition in a hierarchical, cohort-specific manner. mRNAs encoding resident proteins of the endomembrane system were clustered at high ER-enrichment values, whereas mRNAs encoding secretory pathway cargo were broadly represented on free and ER-bound ribosomes. Two distinct modes of mRNA association with the ER were identified. mRNAs encoding endomembrane-resident proteins were bound via direct, ribosome-independent interactions, whereas mRNAs encoding secretory cargo displayed predominantly ribosome-dependent modes of ER association. These data indicate that mRNAs are partitioned between the cytosol and ER compartments via a hierarchical system of intrinsic and encoded topogenic signals and identify mRNA cohort-restricted modes of mRNA association with the ER.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


1992 ◽  
Vol 117 (3) ◽  
pp. 505-513 ◽  
Author(s):  
T Marquardt ◽  
A Helenius

As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains.


2012 ◽  
Vol 197 (6) ◽  
pp. 761-773 ◽  
Author(s):  
Eric M. Rubenstein ◽  
Stefan G. Kreft ◽  
Wesley Greenblatt ◽  
Robert Swanson ◽  
Mark Hochstrasser

Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009255
Author(s):  
Zhanna Lipatova ◽  
Valeriya Gyurkovska ◽  
Sarah F. Zhao ◽  
Nava Segev

Thirty percent of all cellular proteins are inserted into the endoplasmic reticulum (ER), which spans throughout the cytoplasm. Two well-established stress-induced pathways ensure quality control (QC) at the ER: ER-phagy and ER-associated degradation (ERAD), which shuttle cargo for degradation to the lysosome and proteasome, respectively. In contrast, not much is known about constitutive ER-phagy. We have previously reported that excess of integral-membrane proteins is delivered from the ER to the lysosome via autophagy during normal growth of yeast cells. Whereas endogenously expressed ER resident proteins serve as cargos at a basal level, this level can be induced by overexpression of membrane proteins that are not ER residents. Here, we characterize this pathway as constitutive ER-phagy. Constitutive and stress-induced ER-phagy share the basic macro-autophagy machinery including the conserved Atgs and Ypt1 GTPase. However, induction of stress-induced autophagy is not needed for constitutive ER-phagy to occur. Moreover, the selective receptors needed for starvation-induced ER-phagy, Atg39 and Atg40, are not required for constitutive ER-phagy and neither these receptors nor their cargos are delivered through it to the vacuole. As for ERAD, while constitutive ER-phagy recognizes cargo different from that recognized by ERAD, these two ER-QC pathways can partially substitute for each other. Because accumulation of membrane proteins is associated with disease, and constitutive ER-phagy players are conserved from yeast to mammalian cells, this process could be critical for human health.


2005 ◽  
Vol 72 ◽  
pp. 1-13 ◽  
Author(s):  
Krysten J. Palmer ◽  
Peter Watson ◽  
David J. Stephens

The organization of intracellular compartments and the transfer of components between them are central to the correct functioning of mammalian cells. Proteins and lipids are transferred between compartments by the formation, movement and subsequent specific fusion of transport intermediates. These vesicles and membrane clusters must be coupled to the cytoskeleton and to motor proteins that drive motility. Anterograde ER (endoplasmic reticulum)-to-Golgi transport, and the converse step of retrograde traffic from the Golgi to the ER, are now known to involve coupling of membranes to the microtubule cytoskeleton. Here we shall discuss our current understanding of the mechanisms that link membrane traffic in the early secretory pathway to the microtubule cytoskeleton in mammalian cells. Recent data have also provided molecular detail of functional co-ordination of motor proteins to specify directionality, as well as mechanisms for regulating motor activity by protein phosphorylation.


1989 ◽  
Vol 108 (5) ◽  
pp. 1647-1655 ◽  
Author(s):  
T J Stoller ◽  
D Shields

We have investigated the role of the somatostatin propeptide in mediating intracellular transport and sorting to the regulated secretory pathway. Using a retroviral expression vector, two fusion proteins were expressed in rat pituitary (GH3) cells: a control protein consisting of the beta-lactamase signal peptide fused to chimpanzee alpha-globin (142 amino acids); and a chimera of the somatostatin signal peptide and proregion (82 amino acids) fused to alpha-globin. Control globin was translocated into the endoplasmic reticulum as determined by accurate cleavage of its signal peptide; however, alpha-globin was not secreted but was rapidly and quantitatively degraded intracellularly with a t 1/2 of 4-5 min. Globin degradation was insensitive to chloroquine, a drug which inhibits lysosomal proteases, but was inhibited at 16 degrees C suggesting proteolysis occurred during transport to the cis-Golgi apparatus. In contrast to the control globin, approximately 30% of the somatostatin propeptide-globin fusion protein was transported to the distal elements of the Golgi apparatus where it was endoproteolytically processed. Processing of the chimera occurred in an acidic intracellular compartment since cleavage was inhibited by 25 microM chloroquine. 60% of the transported chimera was cleaved at the Arg-Lys processing site in native prosomatostatin yielding "mature" alpha-globin. Most significantly, approximately 50% of processed alpha-globin was sorted to the regulated pathway and secreted in response to 8-Br-cAMP. We conclude that the somatostatin propeptide mediated transport of alpha-globin from the endoplasmic reticulum to the trans-Golgi network by protecting molecules from degradation and in addition, facilitated packaging of alpha-globin into vesicles whose secretion was stimulated by cAMP.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Yoichiro Harada ◽  
Yuki Ohkawa ◽  
Kento Maeda ◽  
Naoyuki Taniguchi

Sign in / Sign up

Export Citation Format

Share Document