scholarly journals Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase

2012 ◽  
Vol 197 (6) ◽  
pp. 761-773 ◽  
Author(s):  
Eric M. Rubenstein ◽  
Stefan G. Kreft ◽  
Wesley Greenblatt ◽  
Robert Swanson ◽  
Mark Hochstrasser

Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.

2002 ◽  
Vol 277 (51) ◽  
pp. 49352-49359 ◽  
Author(s):  
Lihong Zhao ◽  
Sandra Lobo ◽  
Xiangwen Dong ◽  
Addison D. Ault ◽  
Robert J. Deschenes

Ras oncogene proteins are plasma membrane-associated signal transducers that are found in all eukaryotes. Posttranslational addition of lipid to a carboxyl-terminal CaaXbox (where “C” represents a cysteine, “a” is generally an aliphatic residue, andXcan be any amino acid) is required to target Ras proteins to the cytosolic surface of the plasma membrane. The pathway by which Ras translocates from the endoplasmic reticulum to the plasma membrane is currently not clear. We have performed a genetic screen to identify components of the Ras plasma membrane localization pathway. Mutations in two genes,ERF2andERF4/SHR5, have been shown to affect the palmitoylation and subcellular localization of Ras proteins. In this report, we show that Erf4p is localized on the endoplasmic reticulum as a peripheral membrane protein in a complex with Erf2p, an integral membrane protein that was identified from the same genetic screen. Erf2p has been shown to be required for the plasma membrane localization of GFP-Ras2p via a pathway distinct from the classical secretory pathway (X. Dong and R. J. Deschenes, manuscript in preparation). We show here that Erf4p, like Erf2p, is involved in the plasma membrane localization of Ras2p. Erf2p and Erf4p represent components of a previously uncharacterized subcellular transport pathway involved in the plasma membrane targeting of Ras proteins.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


2020 ◽  
Vol 295 (47) ◽  
pp. 16113-16120
Author(s):  
Avery M. Runnebohm ◽  
Kyle A. Richards ◽  
Courtney Broshar Irelan ◽  
Samantha M. Turk ◽  
Halie E. Vitali ◽  
...  

Translocation of proteins across biological membranes is essential for life. Proteins that clog the endoplasmic reticulum (ER) translocon prevent the movement of other proteins into the ER. Eukaryotes have multiple translocon quality control (TQC) mechanisms to detect and destroy proteins that persistently engage the translocon. TQC mechanisms have been defined using a limited panel of substrates that aberrantly occupy the channel. The extent of substrate overlap among TQC pathways is unknown. In this study, we found that two TQC enzymes, the ER-associated degradation ubiquitin ligase Hrd1 and zinc metalloprotease Ste24, promote degradation of characterized translocon-associated substrates of the other enzyme in Saccharomyces cerevisiae. Although both enzymes contribute to substrate turnover, our results suggest a prominent role for Hrd1 in TQC. Yeast lacking both Hrd1 and Ste24 exhibit a profound growth defect, consistent with overlapping function. Remarkably, two mutations that mildly perturb post-translational translocation and reduce the extent of aberrant translocon engagement by a model substrate diminish cellular dependence on TQC enzymes. Our data reveal previously unappreciated mechanistic complexity in TQC substrate detection and suggest that a robust translocon surveillance infrastructure maintains functional and efficient translocation machinery.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


2001 ◽  
Vol 21 (13) ◽  
pp. 4276-4291 ◽  
Author(s):  
Richard G. Gardner ◽  
Alexander G. Shearer ◽  
Randolph Y. Hampton

ABSTRACT Ubiquitination is used to target both normal proteins for specific regulated degradation and misfolded proteins for purposes of quality control destruction. Ubiquitin ligases, or E3 proteins, promote ubiquitination by effecting the specific transfer of ubiquitin from the correct ubiquitin-conjugating enzyme, or E2 protein, to the target substrate. Substrate specificity is usually determined by specific sequence determinants, or degrons, in the target substrate that are recognized by the ubiquitin ligase. In quality control, however, a potentially vast collection of proteins with characteristic hallmarks of misfolding or misassembly are targeted with high specificity despite the lack of any sequence similarity between substrates. In order to understand the mechanisms of quality control ubiquitination, we have focused our attention on the first characterized quality control ubiquitin ligase, the HRD complex, which is responsible for the endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous ER-resident proteins. Using an in vivo cross-linking assay, we directly examined the association of the separate HRDcomplex components with various ERAD substrates. We have discovered that the HRD ubiquitin ligase complex associates with both ERAD substrates and stable proteins, but only mediates ubiquitin-conjugating enzyme association with ERAD substrates. Our studies with the sterol pathway-regulated ERAD substrate Hmg2p, an isozyme of the yeast cholesterol biosynthetic enzyme HMG-coenzyme A reductase (HMGR), indicated that the HRD complex discerns between a degradation-competent “misfolded” state and a stable, tightly folded state. Thus, it appears that the physiologically regulated, HRD-dependent degradation of HMGR is effected by a programmed structural transition from a stable protein to a quality control substrate.


2011 ◽  
Vol 22 (16) ◽  
pp. 2937-2945 ◽  
Author(s):  
Laura A. Jaenicke ◽  
Holger Brendebach ◽  
Matthias Selbach ◽  
Christian Hirsch

The HRD ubiquitin ligase recognizes and ubiquitylates proteins of the endoplasmic reticulum that display structural defects. Here, we apply quantitative proteomics to characterize the substrate spectrum of the HRD complex. Among the identified substrates is Erg3p, a glycoprotein involved in sterol synthesis. We characterize Erg3p and demonstrate that the elimination of Erg3p requires Htm1p and Yos9p, two proteins that take part in the glycan-dependent turnover of aberrant proteins. We further show that the HRD ligase also mediates the breakdown of Erg3p and CPY* engineered to lack N-glycans. The degradation of these nonglycosylated substrates is enhanced by a mutant variant of Yos9p that has lost its affinity for oligosaccharides, indicating that Yos9p has a previously unrecognized role in the quality control of nonglycosylated proteins.


2013 ◽  
Vol 24 (11) ◽  
pp. 1765-1775 ◽  
Author(s):  
Kunio Nakatsukasa ◽  
Jeffrey L. Brodsky ◽  
Takumi Kamura

During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.


2004 ◽  
Vol 15 (2) ◽  
pp. 908-921 ◽  
Author(s):  
Gregory Huyer ◽  
Gaby L. Longsworth ◽  
Deborah L. Mason ◽  
Monica P. Mallampalli ◽  
J. Michael McCaffery ◽  
...  

The folding of nascent secretory and membrane proteins is monitored by the endoplasmic reticulum (ER) quality control system. Misfolded proteins are retained in the ER and can be removed by ER-associated degradation. As a model for the ER quality control of multispanning membrane proteins in yeast, we have been studying mutant forms of Ste6p. Here, we identify mislocalized mutant forms of Ste6p that induce the formation of, and localize to, prominent structures that are absent in normal cells. We have named these structures ER-associated compartments (ERACs), based on their juxtaposition to and connection with the ER, as observed by fluorescence and electron microscopy. ERACs comprise a network of tubulo-vesicular structures that seem to represent proliferated ER membranes. Resident ER lumenal and membrane proteins are present in ERACs in addition to their normal ER localization, suggesting there is no barrier for their entry into ERACs. However, the forms of Ste6p in ERACs are excluded from the ER and do not enter the secretory pathway; instead, they are ultimately targeted for ER-associated degradation. The presence of ERACs does not adversely affect secretory protein traffic through the ER and does not lead to induction of the unfolded protein response. We propose that ERACs may be holding sites to which misfolded membrane proteins are specifically diverted so as not to interfere with normal cellular functions. We discuss the likelihood that related ER membrane proliferations that form in response to certain other mutant or unassembled membrane proteins may be substantially similar to ERACs.


Sign in / Sign up

Export Citation Format

Share Document