scholarly journals Requirement of the N-Terminal Extension for Vacuolar Trafficking and Transport Activity of Yeast Ycf1p, an ATP-binding Cassette Transporter

2002 ◽  
Vol 13 (12) ◽  
pp. 4443-4455 ◽  
Author(s):  
Deborah L. Mason ◽  
Susan Michaelis

Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function.

2011 ◽  
Vol 6 (5) ◽  
pp. 785-801 ◽  
Author(s):  
Anke Licht ◽  
Erwin Schneider

AbstractATP-binding cassette (ABC) systems are found in all three domains of life and in some giant viruses and form one of the largest protein superfamilies. Most family members are transport proteins that couple the free energy of ATP hydrolysis to the translocation of solutes across a biological membrane. The energizing module is also used to drive non-transport processes associated, e.g., with DNA repair and protein translation. Many ABC proteins are of considerable medical importance. In humans, dysfunction of at least eighteen out of 49 ABC transporters is associated with disease, such as cystic fibrosis, Tangier disease, adrenoleukodystrophy or Stargardt’s macular degeneration. In prokaryotes, ABC proteins confer resistance to antibiotics, secrete virulence factors and envelope components, or mediate the uptake of a large variety of nutrients. Canonical ABC transporters share a common structural organization comprising two transmembrane domains (TMDs) that form the translocation pore and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. In this Mini-Review, we summarize recent structural and biochemical data obtained from both prokaryotic and eukaryotic model systems.


Drug Research ◽  
2021 ◽  
Author(s):  
Amir Shadboorestan ◽  
Parastoo Tarighi ◽  
Mahsa Koosha ◽  
Homa Faghihi ◽  
Mohammad Hossein Ghahremani ◽  
...  

Background Glucagon-like petide-1 (GLP-1) agonists such as liraglutide are widely employed in type 2 diabetes due to their glucose reducing properties and small risk of hypoglycemia. Recently, it has been shown that GLP-1agonists can inhibit breast cancer cells growth. Nonetheless, concerns are remained about liraglutide tumor promoting effects as stated by population studies. Material and Methods We evaluated the effects liraglutide on proliferation of MDA-MB-231 cells by MTT assay and then ATP-binding cassette (ABC) transporters expressions assessed by Real time PCR. Statistical comparisons were made using one-way analysis of variance followed by a post hoc Dunnett test. Results Here, we report that liraglutide can stimulate the growth of highly invasive triple negative cell line MDA-MB-231; which can be attributed to AMPK-dependent epithelial-mesenchymal transition (EMT) happening in MDA-MB-231 context. Toxicity effects were only observed with concentrations far above the serum liraglutide concentration. ATP-binding cassette (ABC) transporters expressions were upregulated, indicating the possible drug resistance and increased EMT. Conclusion In conclusion, these results suggest that liraglutide should be used with caution in patients who are suffering or have the personal history of triple negative breast cancer. However, more detailed studies are required to deepen understanding of liraglutide consequences in triple negative breast cancer. ▶Graphical Abstract.


2018 ◽  
Vol 138 (3) ◽  
pp. 487-487
Author(s):  
Antonin Dréan ◽  
Shai Rosenberg ◽  
François-Xavier Lejeune ◽  
Larissa Goli ◽  
Aravindan Arun Nadaradjane ◽  
...  

2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Antonella Maria Salvia ◽  
Flavia Cuviello ◽  
Sabrina Coluzzi ◽  
Roberta Nuccorini ◽  
Immacolata Attolico ◽  
...  

Hematopoietic cells express ATP binding cassette (ABC) transporters in relation to different degrees of differentiation. One of the known multidrug resistance mechanisms in acute myeloid leukemia (AML) is the overexpression of efflux pumps belonging to the superfamily of ABC transporters such as ABCB1, ABCG2 and ABCC1. Although several studies were carried out to correlate ABC transporters expression with drug resistance, little is known about their role as markers of diagnosis and progression of the disease. For this purpose we investigated the expression, by real-time PCR, of some ABC genes in bone marrow samples of AML patients at diagnosis and after induction therapy. At diagnosis, ABCG2 was always down-regulated, while an up regulated trend for ABCC1 was observed. After therapy the examined genes showed a different expression trend and approached the values of healthy subjects suggesting that this event could be considered as a marker of AML regression. The expression levels of some ABC transporters such as ABCC6, seems to be related to gender, age and to the presence of FLT3/ITD gene mutation.


2016 ◽  
Vol 283 (1826) ◽  
pp. 20152838 ◽  
Author(s):  
Ryan T. Paitz ◽  
Syed Abbas Bukhari ◽  
Alison M. Bell

Offspring from females that experience stressful conditions during reproduction often exhibit altered phenotypes and many of these effects are thought to arise owing to increased exposure to maternal glucocorticoids. While embryos of placental vertebrates are known to regulate exposure to maternal glucocorticoids via placental steroid metabolism, much less is known about how and whether egg-laying vertebrates can control their steroid environment during embryonic development. We tested the hypothesis that threespine stickleback ( Gasterosteus aculeatus ) embryos can regulate exposure to maternal steroids via active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h) cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient to prevent a transcriptional response of embryos to exogenous cortisol. Taken together, these findings suggest that, much like their placental counterparts, developing fish embryos can actively regulate their exposure to maternal cortisol. These findings highlight the fact that even in egg-laying vertebrates, the realized exposure to maternal steroids is mediated by both maternal and embryonic processes and this has important implications for understanding how maternal stress influences offspring development.


2015 ◽  
Vol 32 (3) ◽  
pp. 243-247 ◽  
Author(s):  
Nobukazu Shitan ◽  
Kazuyoshi Terasaka ◽  
Hirobumi Yamamoto ◽  
Fumihiko Sato ◽  
Kazufumi Yazaki

2021 ◽  
Vol 13 ◽  
Author(s):  
Dongmei Wu ◽  
Yang Hu ◽  
Min Song ◽  
Gongbo Li

Abnormal amyloid beta (Aβ) clearance is a distinctive pathological mechanism for Alzheimer’s disease (AD). ATP-binding cassette transporter A1 (ABCA1), which mediates the lipidation of apolipoprotein E, plays a critical role in Aβ clearance. As an environmental factor for AD, dichlorodiphenyltrichloroethane (DDT) can decrease ATP-binding cassette transporter A1 (ABCA1) expression and disrupt Aβ clearance. Liver X receptor α (LXRα) is an autoregulatory transcription factor for ABCA1 and a target of some environmental pollutants, such as organophosphate pesticides. In this study, we aimed to investigate whether DDT could affect Aβ clearance by targeting LXRα. The DDT-pretreated H4 human neuroglioma cells and immortalized astrocytes were incubated with exogenous Aβ to evaluate Aβ consumption. Meanwhile, cytotoxicity and LXRα expression were determined in the DDT-treated cells. Subsequently, the antagonism of DDT on LXRα agonist T0901317 was determined in vitro. The interaction between DDT and LXRα was predicted by molecular docking and molecular dynamics simulation technology. We observed that DDT could inhibit Aβ clearance and decrease the levels of LXRα mRNA and LXRα protein. Moreover, DDT is supposed to strongly bind to LXRα and exert antagonistic effects on LXRα. In conclusion, this study firstly presented that DDT could inhibit LXRα expression, which would contribute to Aβ clearance decline in vitro. It provides an experimental basis to search for potential therapeutic targets of AD.


Sign in / Sign up

Export Citation Format

Share Document