scholarly journals Microtubule Organization Requires Cell Cycle-dependent Nucleation at Dispersed Cytoplasmic Sites: Polar and Perinuclear Microtubule Organizing Centers in the Plant Pathogen Ustilago maydis

2003 ◽  
Vol 14 (2) ◽  
pp. 642-657 ◽  
Author(s):  
Anne Straube ◽  
Marianne Brill ◽  
Berl R. Oakley ◽  
Tetsuya Horio ◽  
Gero Steinberg

Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungusUstilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluorescent protein-MTs and MT plus-ends, tagged by a fluorescent EB1 homologue, provided evidence for antipolar MT orientation and dispersed cytoplasmic MT nucleating centers in unbudded cells. On budding γ-tubulin containing MTOCs formed at the bud neck, and MTs reorganized with >85% of all minus-ends being focused toward the growth region. Experimentally induced lateral budding resulted in MTs that curved out of the bud, again supporting the notion that polar growth requires polar MT nucleation. Depletion or overexpression of Tub2, the γ-tubulin from U. maydis, affected MT number in interphase cells. The SPB was inactive in G2 phase but continuously recruited γ-tubulin until it started to nucleate mitotic MTs. Taken together, our data suggest that MT reorganization in U. maydis depends on cell cycle-specific nucleation at dispersed cytoplasmic sites, at a polar MTOC and the SPB.

2002 ◽  
Vol 16 (6) ◽  
pp. 1352-1366 ◽  
Author(s):  
G. Alexander Abel ◽  
Gabriela M. Wochnik ◽  
Joëlle Rüegg ◽  
Audrey Rouyer ◽  
Florian Holsboer ◽  
...  

Abstract To elucidate the mechanisms mediating the reported transient physiological glucocorticoid resistance in G2/M cell cycle phase, we sought to establish a model system of glucocorticoid-resistant cells in G2. We synchronized various cell lines in G2 to measure dexamethasone (DEX)-induced transactivation of either two endogenous promoters (rat tyrosine aminotransferase and mouse metallothionein I) or the mouse mammary tumor virus (MMTV) promoter stably or transiently transfected. To circumvent the need for synchronization drugs, we stably transfected an MMTV-driven green fluorescent protein to directly correlate DEX-induced transactivation with the cell cycle position for each cell of an asynchronous population using flow cytometry. Surprisingly, all promoters tested were DEX-inducible in G2. Even in mitotic cells, only the stably transfected MMTV promoter was repressed, whereas the same promoter transiently transfected was inducible. The use of Hoechst 33342 for synchronization in previous studies probably caused a misinterpretation, because we detected interference of this drug with GR-dependent transcription independent of the cell cycle. Finally, GR activated a simple promoter in G2, excluding a functional effect of cell cycle-dependent phosphorylation of GR, as implied previously. We conclude that GR itself is fully functional throughout the entire cell cycle, but GR responsiveness is repressed in mitosis due to chromatin condensation rather than to specific modification of GR.


1999 ◽  
Vol 19 (12) ◽  
pp. 8191-8200 ◽  
Author(s):  
Philippe Bastin ◽  
Thomas H. MacRae ◽  
Susan B. Francis ◽  
Keith R. Matthews ◽  
Keith Gull

ABSTRACT The paraflagellar rod (PFR) of the African trypanosomeTrypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.


2014 ◽  
Vol 25 (15) ◽  
pp. 2250-2259 ◽  
Author(s):  
Nicole Rachfall ◽  
Alyssa E. Johnson ◽  
Sapna Mehta ◽  
Jun-Song Chen ◽  
Kathleen L. Gould

In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)–associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle–dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)–mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.


1998 ◽  
Vol 9 (4) ◽  
pp. 775-793 ◽  
Author(s):  
Gislene Pereira ◽  
Michael Knop ◽  
Elmar Schiebel

In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the γ-tubulin complex containing the γ-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.


2008 ◽  
Vol 19 (1) ◽  
pp. 368-377 ◽  
Author(s):  
Christiane Wiese

γ-Tubulin is an indispensable component of the animal centrosome and is required for proper microtubule organization. Within the cell, γ-tubulin exists in a multiprotein complex containing between two (some yeasts) and six or more (metazoa) additional highly conserved proteins named gamma ring proteins (Grips) or gamma complex proteins (GCPs). γ-Tubulin containing complexes isolated from Xenopus eggs or Drosophila embryos appear ring-shaped and have therefore been named the γ-tubulin ring complex (γTuRC). Curiously, many organisms (including humans) have two distinct γ-tubulin genes. In Drosophila, where the two γ-tubulin isotypes have been studied most extensively, the γ-tubulin genes are developmentally regulated: the “maternal” γ-tubulin isotype (named γTub37CD according to its location on the genetic map) is expressed in the ovary and is deposited in the egg, where it is thought to orchestrate the meiotic and early embryonic cleavages. The second γ-tubulin isotype (γTub23C) is ubiquitously expressed and persists in most of the cells of the adult fly. In those rare cases where both γ-tubulins coexist in the same cell, they show distinct subcellular distributions and cell-cycle-dependent changes: γTub37CD mainly localizes to the centrosome, where its levels vary only slightly with the cell cycle. In contrast, the level of γTub23C at the centrosome increases at the beginning of mitosis, and γTub23C also associates with spindle pole microtubules. Here, we show that γTub23C forms discrete complexes that closely resemble the complexes formed by γTub37CD. Surprisingly, however, γTub23C associates with a distinct, longer splice variant of Dgrip84. This may reflect a role for Dgrip84 in regulating the activity and/or the location of the γ-tubulin complexes formed with γTub37CD and γTub23C.


1993 ◽  
Vol 121 (5) ◽  
pp. 961-976 ◽  
Author(s):  
H Funabiki ◽  
I Hagan ◽  
S Uzawa ◽  
M Yanagida

Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted.


2001 ◽  
Vol 114 (3) ◽  
pp. 609-622 ◽  
Author(s):  
G. Steinberg ◽  
R. Wedlich-Soldner ◽  
M. Brill ◽  
I. Schulz

Many fungal pathogens undergo a yeast-hyphal transition during their pathogenic development that requires rearrangement of the cytoskeleton, followed by directed membrane traffic towards the growth region. The role of microtubules and their dynamic behavior during this process is not well understood. Here we set out to elucidate the organization, cellular role and in vivo dynamics of microtubules in the dimorphic phytopathogen Ustilago maydis. Hyphae and unbudded yeast-like cells of U. maydis contain bundles of spindle pole body-independent microtubules. At the onset of bud formation two spherical tubulin structures focus microtubules towards the growth region, suggesting that they support polar growth in G(2), while spindle pole body-nucleated astral microtubules participate in nuclear migration in M and early G(1). Conditional mutants of an essential alpha-tubulin gene from U. maydis, tub1, confirmed a role for interphase microtubules in determination of cell polarity and growth. Observation of GFP-Tub1 fusion protein revealed that spindle pole body-independent and astral microtubules are dynamic, with elongation and shrinkage rates comparable to those found in vertebrate systems. In addition, very fast depolymerization was measured within microtubule bundles. Unexpectedly, interphase microtubules underwent bending and rapid translocations within the cell, suggesting that unknown motor activities participate in microtubule organization in U. maydis. Movies available on-line: http://www.biologists.com/JCS/movies/jcs1792.html


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3171-3181 ◽  
Author(s):  
C.J. Malone ◽  
W.D. Fixsen ◽  
H.R. Horvitz ◽  
M. Han

Nuclear migrations are essential for metazoan development. Two nuclear migrations that occur during C. elegans development require the function of the unc-84 gene. unc-84 mutants are also defective in the anchoring of nuclei within the hypodermal syncytium and in the migrations of the two distal tip cells of the gonad. Complementation analyses of 17 unc-84 alleles defined two genetically separable functions. Both functions are required for nuclear and distal tip cell migrations, but only one is required for nuclear anchorage. The DNA lesions associated with these 17 mutations indicate that the two genetically defined functions correspond to two distinct regions of the UNC-84 protein. The UNC-84 protein has a predicted transmembrane domain and a C-terminal region with similarity to the S. pombe spindle pole body protein Sad1 and to two predicted mammalian proteins. Analysis of a green fluorescent protein reporter indicated that UNC-84 is widely expressed and localized to the nuclear envelope. We propose that UNC-84 functions to facilitate a nuclear-centrosomal interaction required for nuclear migration and anchorage.


1998 ◽  
Vol 141 (5) ◽  
pp. 1217-1228 ◽  
Author(s):  
Janni Petersen ◽  
Olaf Nielsen ◽  
Richard Egel ◽  
Iain M. Hagan

Formins are involved in diverse aspects of morphogenesis, and share two regions of homology: FH1 and FH2. We describe a new formin homology region, FH3. FH3 is an amino-terminal domain that differs from the Rho binding site identified in Bni1p and p140mDia. The Schizosaccharomyces pombe formin Fus1 is required for conjugation, and is localized to the projection tip in cells of mating pairs. We replaced genomic fus1+ with green fluorescent protein (GFP)- tagged versions that lacked either the FH1, FH2, or FH3 domain. Deletion of any FH domain essentially abolished mating. FH3, but neither FH1 nor FH2, was required for Fus1 localization. An FH3 domain–GFP fusion protein localized to the projection tips of mating pairs. Thus, the FH3 domain alone can direct protein localization. The FH3 domains of both Fus1 and the S. pombe cytokinesis formin Cdc12 were able to localize GFP to the spindle pole body in half of the late G2 cells in a vegetatively growing population. Expression of both FH3-GFP fusions also affected cytokinesis. Overexpression of the spindle pole body component Sad1 altered the distribution of both Sad1 and the FH3-GFP domain. Together these data suggest that proteins at multiple sites can interact with FH3 domains.


2011 ◽  
Vol 300 (2) ◽  
pp. C308-C317 ◽  
Author(s):  
Insil Kim ◽  
John J. Lemasters

Fasting in vivo and nutrient deprivation in vitro enhance sequestration of mitochondria and other organelles by autophagy for recycling of essential nutrients. Here our goal was to use a transgenic mouse strain expressing green fluorescent protein (GFP) fused to rat microtubule-associated protein-1 light chain 3 (LC3), a marker protein for autophagy, to characterize the dynamics of mitochondrial turnover by autophagy (mitophagy) in hepatocytes during nutrient deprivation. In complete growth medium, GFP-LC3 fluorescence was distributed diffusely in the cytosol and incorporated in mostly small (0.2–0.3 μm) patches in proximity to mitochondria, which likely represent preautophagic structures (PAS). After nutrient deprivation plus 1 μM glucagon to simulate fasting, PAS grew into green cups (phagophores) and then rings (autophagosomes) that enveloped individual mitochondria, a process that was blocked by 3-methyladenine. Autophagic sequestration of mitochondria took place in 6.5 ± 0.4 min and often occurred coordinately with mitochondrial fission. After ring formation and apparent sequestration, mitochondria depolarized in 11.8 ± 1.4 min, as indicated by loss of tetramethylrhodamine methylester fluorescence. After ring formation, LysoTracker Red uptake, a marker of acidification, occurred gradually, becoming fully evident at 9.9 ± 1.9 min of ring formation. After acidification, GFP-LC3 fluorescence dispersed. PicoGreen labeling of mitochondrial DNA (mtDNA) showed that mtDNA was also sequestered and degraded in autophagosomes. Overall, the results indicate that PAS serve as nucleation sites for mitophagy in hepatocytes during nutrient deprivation. After autophagosome formation, mitochondrial depolarization and vesicular acidification occur, and mitochondrial contents, including mtDNA, are degraded.


Sign in / Sign up

Export Citation Format

Share Document