scholarly journals A Novel Dynein Light Intermediate Chain Colocalizes with the Retrograde Motor for Intraflagellar Transport at Sites of Axoneme Assembly in Chlamydomonas and Mammalian Cells

2003 ◽  
Vol 14 (5) ◽  
pp. 2041-2056 ◽  
Author(s):  
Catherine A. Perrone ◽  
Douglas Tritschler ◽  
Patrick Taulman ◽  
Raqual Bower ◽  
Bradley K. Yoder ◽  
...  

The assembly of cilia and flagella depends on bidirectional intraflagellar transport (IFT). Anterograde IFT is driven by kinesin II, whereas retrograde IFT requires cytoplasmic dynein 1b (cDHC1b). Little is known about how cDHC1b interacts with its cargoes or how it is regulated. Recent work identified a novel dynein light intermediate chain (D2LIC) that colocalized with the mammalian cDHC1b homolog DHC2 in the centrosomal region of cultured cells. To see whether the LIC might play a role in IFT, we characterized the gene encoding the Chlamydomonas homolog of D2LIC and found its expression is up-regulated in response to deflagellation. We show that the LIC subunit copurifies with cDHC1b during flagellar isolation, dynein extraction, sucrose density centrifugation, and immunoprecipitation. Immunocytochemistry reveals that the LIC colocalizes with cDHC1b in the basal body region and along the length of flagella in wild-type cells. Localization of the complex is altered in a collection of retrograde IFT and length control mutants, which suggests that the affected gene products directly or indirectly regulate cDHC1b activity. The mammalian DHC2 and D2LIC also colocalize in the apical cytoplasm and axonemes of ciliated epithelia in the lung, brain, and efferent duct. These studies, together with the identification of an LIC mutation, xbx-1(ok279), which disrupts retrograde IFT in Caenorhabditis elegans, indicate that the novel LIC is a component of the cDHC1b/DHC2 retrograde IFT motor in a variety of organisms.

2005 ◽  
Vol 16 (3) ◽  
pp. 1341-1354 ◽  
Author(s):  
Joshua Mueller ◽  
Catherine A. Perrone ◽  
Raqual Bower ◽  
Douglas G. Cole ◽  
Mary E. Porter

Intraflagellar transport (IFT) is a bidirectional process required for assembly and maintenance of cilia and flagella. Kinesin-2 is the anterograde IFT motor, and Dhc1b/Dhc2 drives retrograde IFT. To understand how either motor interacts with the IFT particle or how their activities might be coordinated, we characterized a ts mutation in the Chlamydomonas gene encoding KAP, the nonmotor subunit of Kinesin-2. The fla3-1 mutation is an amino acid substitution in a conserved C-terminal domain. fla3-1 strains assemble flagella at 21°C, but cannot maintain them at 33°C. Although the Kinesin-2 complex is present at both 21 and 33°C, the fla3-1 Kinesin-2 complex is not efficiently targeted to or retained in the basal body region or flagella. Video-enhanced DIC microscopy of fla3-1 cells shows that the frequency of anterograde IFT particles is significantly reduced. Anterograde particles move at near wild-type velocities, but appear larger and pause more frequently in fla3-1. Transformation with an epitope-tagged KAP gene rescues all of the fla3-1 defects and results in preferential incorporation of tagged KAP complexes into flagella. KAP is therefore required for the localization of Kinesin-2 at the site of flagellar assembly and the efficient transport of anterograde IFT particles within flagella.


2018 ◽  
Vol 46 (4) ◽  
pp. 967-982 ◽  
Author(s):  
Anthony J. Roberts

Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.


2015 ◽  
Vol 208 (6) ◽  
pp. 683-692 ◽  
Author(s):  
Wenjing Li ◽  
Peishan Yi ◽  
Guangshuo Ou

Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2–driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT–dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.


2016 ◽  
Vol 27 (15) ◽  
pp. 2404-2422 ◽  
Author(s):  
Jaimee Reck ◽  
Alexandria M. Schauer ◽  
Kristyn VanderWaal Mills ◽  
Raqual Bower ◽  
Douglas Tritschler ◽  
...  

The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.


2004 ◽  
Vol 15 (10) ◽  
pp. 4382-4394 ◽  
Author(s):  
Yuqing Hou ◽  
Gregory J. Pazour ◽  
George B. Witman

Intraflagellar transport (IFT), the bidirectional movement of particles along flagella, is essential for flagellar assembly. The motor for retrograde IFT in Chlamydomonas is cytoplasmic dynein 1b, which contains the dynein heavy chain DHC1b and the light intermediate chain (LIC) D1bLIC. To investigate a possible role for the LIC in IFT, we identified a d1blic mutant. DHC1b is reduced in the mutant, indicating that D1bLIC is important for stabilizing dynein 1b. The mutant has variable length flagella that accumulate IFT-particle proteins, indicative of a defect in retrograde IFT. Interestingly, the remaining DHC1b is normally distributed in the mutant flagella, strongly suggesting that the defect is in binding of cargo to the retrograde motor rather than in motor activity per se. Cell growth and Golgi apparatus localization and morphology are normal in the mutant, indicating that D1bLIC is involved mainly in retrograde IFT. Like mammalian LICs, D1bLIC has a phosphate-binding domain (P-loop) at its N-terminus. To investigate the function of this conserved domain, d1blic mutant cells were transformed with constructs designed to express D1bLIC proteins with mutated P-loops. The constructs rescued the mutant cells to a wild-type phenotype, indicating that the function of D1bLIC in IFT is independent of its P-loop.


2020 ◽  
Author(s):  
Arunkumar Venkatesan ◽  
Jie Geng ◽  
Malathi Kandarpa ◽  
Sanjeeva Joseph Wijeyesakere ◽  
Ashwini Bhide ◽  
...  

AbstractMyeloproliferative neoplasms (MPNs) are frequently driven by insertions and deletions within the gene encoding calreticulin (CRT). CRTDel52 and CRTIns5 are recurrent mutations. Although oncogenic transformation requires both mutated CRT and the myeloproliferative leukemia protein (Mpl), the molecular mechanism of CRT-mediated constitutive activation of Mpl is unknown. Our studies reveal that the novel C-domain of CRTDel52 encodes specificity both for Mpl binding and for disulfide-mediated CRT dimerization. Disulfide-stabilized CRTDel52 dimers and multimers are observed in MPN patient-derived platelet lysates and in transfected mammalian cells. Cysteine mutations within both the novel C-domain (C400A and C404A) and the conserved N-domain (C163A) of CRTDel52 are required to reduce disulfide-mediated dimers and multimers of CRTDel52. Based on these data and published structures of crystalized CRT oligomers, we tested the relevance of ionic interactions between charged residues proximal to C163 at the N-domain dimerization interface. Charge alteration at these residues affected dimerization and multimerization of both wild type and CRTDel52. Elimination of intermolecular disulfides and disruption of ionic interactions at both proposed dimerization interfaces was required to abrogate the ability of CRTDel52 to induce cytokine-independent cell proliferation via Mpl. Based on these findings, we propose a structural model of the Mpl-activating CRTDel52 unit as a covalently-linked dimer that is stabilized by disulfides and ionic interactions at both the C-domain and N-domain. MPNs exploit a natural dimerization interface of CRT combined with C-domain gain-of-functions to achieve cell transformation.


2001 ◽  
Vol 114 (24) ◽  
pp. 4557-4565 ◽  
Author(s):  
Jens Harborth ◽  
Sayda M. Elbashir ◽  
Kim Bechert ◽  
Thomas Tuschl ◽  
Klaus Weber

We report the first RNAi-induced phenotypes in mammalian cultured cells using RNA interference mediated by duplexes of 21-nt RNAs. The 21 gene products studied have different functions and subcellular localizations. Knockdown experiments monitored by immunofluorescence and immunoblotting show that even major cellular proteins such as actin and vimentin can be silenced efficiently. Genes were classified as essential or nonessential depending on impaired cell growth after RNA silencing. Phenotypes also involved altered cell morphology and aberrant mitotic arrest. Among the essential genes identified by RNAi for which such information was previously not available are lamin B1, lamin B2, NUP153, GAS41, ARC21, cytoplasmic dynein, the protein kinase cdk1 and both β- and γ-actin. Newly defined nonessential genes are emerin and zyxin. Several genes previously characterized by other methods such as knockout of murine genes are included as internal controls and gave identical results when RNAi was used. In the case of two nonessential genes (lamin A/C and zyxin) RNAi provides a recognizable phenotype. Our results complete the characterization of the mammalian nuclear lamins. While lamins A/C appear as nonessential proteins in the mouse embryo and in RNAi treated cultured cells, the two other lamins, B1 and B2, are now identified as essential proteins. Interestingly the inner nuclear membrane protein emerin, thought to be a ligand of lamin A/C, is also a nonessential protein in tissue culture cells.


2021 ◽  
Author(s):  
Alice Dupont Juhl ◽  
Zeinab Anvarian ◽  
Julia Berges ◽  
Daniel Wustner ◽  
Lotte B Pedersen

Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein 2 motors. Nematodes additionally employ a male-specific kinesin-3 motor, KLP-6, which regulates ciliary content and function by promoting release of bioactive extracellular vesicles (EVs) from cilia. Here we show by live cell imaging that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured mammalian cells at 0.64 +/- 0.07 μm/s in the anterograde direction and at 0.39 +/- 0.06 μm/s in the retrograde direction, reminiscent of conventional IFT. In addition, we found that KIF13B undergoes EV-like release from the ciliary tip whereas a ciliary membrane marker, SMO-tRFP, remains stably associated with cilia during such EV release. Our results suggest that KIF13B, similar to KLP-6, regulates ciliary membrane content by promoting ciliary EV release, possibly in coordination with conventional IFT.


2009 ◽  
Vol 20 (2) ◽  
pp. 708-720 ◽  
Author(s):  
Vidyalakshmi Rajagopalan ◽  
Aswati Subramanian ◽  
David E. Wilkes ◽  
David G. Pennock ◽  
David J. Asai

Eukaryotic cilia and flagella are assembled and maintained by the bidirectional intraflagellar transport (IFT). Studies in alga, nematode, and mouse have shown that the heavy chain (Dyh2) and the light intermediate chain (D2LIC) of the cytoplasmic dynein-2 complex are essential for retrograde intraflagellar transport. In these organisms, disruption of either dynein-2 component results in short cilia/flagella with bulbous tips in which excess IFT particles have accumulated. In Tetrahymena, the expression of the DYH2 and D2LIC genes increases during reciliation, consistent with their roles in IFT. However, the targeted elimination of either DYH2 or D2LIC gene resulted in only a mild phenotype. Both knockout cell lines assembled motile cilia, but the cilia were of more variable lengths and less numerous than wild-type controls. Electron microscopy revealed normally shaped cilia with no swelling and no obvious accumulations of material in the distal ciliary tip. These results demonstrate that dynein-2 contributes to the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena.


2001 ◽  
Vol 82 (3) ◽  
pp. 415-421 ◽  
Author(s):  
Izumi Horikawa ◽  
Elaine S. Parker ◽  
Gregory G. Solomon ◽  
J. Carl Barrett

Sign in / Sign up

Export Citation Format

Share Document