scholarly journals Deoxycholic Acid Activates β-Catenin Signaling Pathway and Increases Colon Cell Cancer Growth and Invasiveness

2004 ◽  
Vol 15 (5) ◽  
pp. 2156-2163 ◽  
Author(s):  
Rama Pai ◽  
Andrzej S. Tarnawski ◽  
Teresa Tran

Colorectal cancer is often lethal when invasion and/or metastasis occur. Tumor progression to the metastatic phenotype is mainly dependent on tumor cell invasiveness. Secondary bile acids, particularly deoxycholic acid (DCA), are implicated in promoting colon cancer growth and progression. Whether DCA modulates β-catenin and promotes colon cancer cell growth and invasiveness remains unknown. Because β-catenin and its target genes urokinase-type plasminogen activator receptor (uPAR) and cyclin D1 are overexpressed in colon cancers, and are linked to cancer growth, invasion, and metastasis, we investigated whether DCA activates β-catenin signaling and promotes colon cancer cell growth and invasiveness. Our results show that low concentrations of DCA (5 and 50 μM) significantly increase tyrosine phosphorylation of β-catenin, induce urokinase-type plasminogen activator, uPAR, and cyclin D1 expression and enhance colon cancer cell proliferation and invasiveness. These events are associated with a substantial loss of E-cadherin binding to β-catenin. Inhibition of β-catenin with small interfering RNA significantly reduced DCA-induced uPAR and cyclin D1 expression. Blocking uPAR with a neutralizing antibody significantly suppressed DCA-induced colon cancer cell proliferation and invasiveness. These findings provide evidence for a novel mechanism underlying the oncogenic effects of secondary bile acids.

2009 ◽  
Vol 100 (10) ◽  
pp. 1801-1808 ◽  
Author(s):  
Lei Wang ◽  
Xi-Xi Cao ◽  
Qi Chen ◽  
Teng-Fang Zhu ◽  
Hong-Guang Zhu ◽  
...  

2005 ◽  
Vol 288 (3) ◽  
pp. G447-G456 ◽  
Author(s):  
Anping Chen ◽  
Jianye Xu

Colorectal cancer is a leading cause of cancer-related morbidity and mortality in the United States. Curcumin, the yellow pigment in turmeric, possesses inhibitory effects on growth of a variety of tumor cells by reducing cell proliferation and inducing apoptosis. Effects of the peroxisome proliferator-activated receptor-γ (PPARγ) on stimulating cell differentiation and on inducing cell cycle arrest have attracted attention from the perspective of treatment and prevention of cancer. The aim of this study was to elucidate the mechanisms by which curcumin inhibits colon cancer cell growth. In the present report, we observed that curcumin, in a dose-dependent manner, inhibited the growth of Moser cells, a human colon cancer-derived cell line, and stimulated the trans-activating activity of PPARγ. Further studies demonstrated that activation of PPARγ was required for curcumin to inhibit Moser cell growth. Activation of PPARγ mediated curcumin suppression of the expression of cyclin D1, a critical protein in the cell cycle, in Moser cells. In addition, curcumin blocked EGF signaling by inhibiting EGF receptor (EGFR) tyrosine phosphorylation and suppressing the gene expression of EGFR mediated by activation of PPARγ. In addition to curcumin reduction of the level of phosphorylated PPARγ, inhibition of cyclin D1 expression played a major and significant role in curcumin stimulation of PPARγ activity in Moser cells. Taken together, our results demonstrated for the first time that curcumin activation of PPARγ inhibited Moser cell growth and mediated the suppression of the gene expression of cyclin D1 and EGFR. These results provided a novel insight into the roles and mechanisms of curcumin in inhibition of colon cancer cell growth and potential therapeutic strategies for treatment of colon cancer.


2001 ◽  
Vol 120 (5) ◽  
pp. A615-A615
Author(s):  
S KUWADA ◽  
C SCAIFE ◽  
J KUANG ◽  
R DAYNES

2015 ◽  
Vol 6 (3) ◽  
pp. 765-771 ◽  
Author(s):  
Guidong Huang ◽  
Jian Mao ◽  
Zhongwei Ji ◽  
Aisikaer Ailati

Some studies have shown that stachyose, as prebiotics, can prevent indirectly colon cancer cell growth by promoting the proliferation of probiotics or producing beneficial materials in the intestine.


2007 ◽  
Vol 43 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Ana García-Navarro ◽  
Cristina González-Puga ◽  
Germaine Escames ◽  
Luis C. López ◽  
Ana López ◽  
...  

2009 ◽  
Vol 127 (5) ◽  
pp. 1220-1229 ◽  
Author(s):  
Lei Wang ◽  
Lisha Kuang ◽  
Xinhua Pan ◽  
Junchen Liu ◽  
Qian Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document